Loading…
Developing a biohybrid lung – sufficient endothelialization of poly-4-methly-1-pentene gas exchange hollow-fiber membranes
Working towards establishing a biohybrid lung with optimized hemocompatibility, this study analyzed the feasibility of establishing flow-resistant endothelium on heparin/albumin coated poly-4-methly-1-pentene hollow fiber gas exchange membranes (PMP-HFs). The seeding efficiency and proliferation of...
Saved in:
Published in: | Journal of the mechanical behavior of biomedical materials 2016-07, Vol.60, p.301-311 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Working towards establishing a biohybrid lung with optimized hemocompatibility, this study analyzed the feasibility of establishing flow-resistant endothelium on heparin/albumin coated poly-4-methly-1-pentene hollow fiber gas exchange membranes (PMP-HFs). The seeding efficiency and proliferation of human cord blood derived endothelial cells (HCBEC) on PMP-HFs were analyzed under static conditions by WST-8 cell proliferation assay and fluorescence microscopy. The HCBEC monolayer integrity under different flow conditions was also assessed. Endothelial-specific phenotype verification, expression activation levels and thrombogenic state markers were quantified by real-time RT-PCR for cell-to-PMP-HF contact under static and dynamic conditions. The results demonstrated the feasibility of establishing a viable, confluent, and flow-resistant endothelial monolayer on the blood-contact surface of PMP-HFs, which maintained a physiological response to TNFα-stimulation and flow conditions. The endothelial phenotype, expression levels of adhesion molecules and thrombogenic state markers were unaffected by cell-to-PMP-HFs contact. These results represent a significant step towards establishing a biohybrid lung. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2016.01.032 |