Loading…
Modeling of ductile fragmentation that includes void interactions
The failure and fragmentation of ductile materials through the nucleation, growth, and coalescence of voids is important to the understanding of key structural materials. In this model of development effort, ductile fragmentation of an elastic–viscoplastic material is studied through a computational...
Saved in:
Published in: | Journal of the mechanics and physics of solids 2015-12, Vol.85, p.54-73 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The failure and fragmentation of ductile materials through the nucleation, growth, and coalescence of voids is important to the understanding of key structural materials. In this model of development effort, ductile fragmentation of an elastic–viscoplastic material is studied through a computational approach which couples these key stages of ductile failure with nucleation site distributions and wave propagation, and predicts fragment spacing within a uniaxial strain approximation. This powerful tool is used to investigate the mechanical and thermal response of OFHC copper at a strain rate of 105. Once the response of the material is understood, the fragmentation of this test material is considered. The average fragment size as well as the fragment size distribution is formulated. |
---|---|
ISSN: | 0022-5096 |
DOI: | 10.1016/j.jmps.2015.09.008 |