Loading…

Removal probability function for Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives

•A S-RPF Function is proposed for evolutionary KMC to simulate conformal wet etching.•A novel transformation matrix is introduced to fast determine the model parameters.•Much better accuracy in simulating conformal etching solutions than reported methods. A new Surfactant-based Removal Probability F...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. 2015-09, Vol.233, p.451-459
Main Authors: Zhang, Hui, Xing, Yan, Gosálvez, Miguel A., Pal, Prem, Sato, Kazuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-5e491a088dd25c5208d4dd46a0b07e0b4d16b07b2b3394e342076e055daffb63
cites cdi_FETCH-LOGICAL-c367t-5e491a088dd25c5208d4dd46a0b07e0b4d16b07b2b3394e342076e055daffb63
container_end_page 459
container_issue
container_start_page 451
container_title Sensors and actuators. A. Physical.
container_volume 233
creator Zhang, Hui
Xing, Yan
Gosálvez, Miguel A.
Pal, Prem
Sato, Kazuo
description •A S-RPF Function is proposed for evolutionary KMC to simulate conformal wet etching.•A novel transformation matrix is introduced to fast determine the model parameters.•Much better accuracy in simulating conformal etching solutions than reported methods. A new Surfactant-based Removal Probability Function (S-RPF) is proposed to perform Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline solutions containing additives, such as tetramethyl ammonium hydroxide (TMAH) or potassium hydroxide (KOH) with small amounts of surfactants (e.g., Triton) and/or alcohols (e.g., Isopropanol=IPA). The S-RPF is built as the product of (i) a modified removal probability function (M-RPF), for pure etchants, and (ii) an additive inhibition term (I-RPF), which describes the orientation-dependent reduction in certain etch rates due to the selective adsorption of the additive on particular silicon surfaces. By construction these functions depend only on a few parameters, whose values are determined by an evolutionary algorithm (EA), which minimizes the differences between the experimental and simulated etch rates for a small set of silicon surfaces. In this respect, the paper introduces a transformation matrix to constrain the evolutionary search space, thus accelerating the convergence for both the M-RPF and I-RPF parameters. The simulated etch rates for numerous silicon orientations in TMAH+trion at different temperatures as well as KOH+IPA show good agreement with the experimental data. Compared to previous studies, the new S-RPF model describes the anisotropy at local etch rate maxima and minima around Si(100) and Si(110) with much better accuracy. The simulation of three-dimensional microstructures confirms the validity of the new S-RPF model for MEMS fabrication in alkaline etchants containing additives.
doi_str_mv 10.1016/j.sna.2015.07.031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825481571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424715300856</els_id><sourcerecordid>1825481571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-5e491a088dd25c5208d4dd46a0b07e0b4d16b07b2b3394e342076e055daffb63</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxaMKJJbCB-DmI5ek49iJs-KEVvypaIWEerccewKzeO3F9q7U78CHrsNy7mlGM7_3pPea5h2HjgMfb_ZdDqbrgQ8dqA4Ev2o2fFKiFTBuXzQb2Paylb1Ur5rXOe8BQAilNs3fH3iIZ-PZMcXZzOSpPLLlFGyhGNgSE_tGAQtZdh9DQbYzyUeW6XDyZkUyiwszgXIsKR4rhsX-ovBzPefqZqsLBWb8b-Or0b-3CSWz-iiGwooa56jQGfOb5uVifMa3_-d18_D508Pua3v3_cvt7uNda8WoSjug3HID0-RcP9ihh8lJ5-RoYAaFMEvHx7rN_SzEVqKQPagRYRicWZZ5FNfN-4ttzfznhLnoA2WL3puA8ZQ1n_pBTnxQvKL8gtoUc0646GOig0mPmoNei9d7XYvXa_EalK7FV82HiwZrhDNh0tkSBouOEtqiXaRn1E_-uY70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825481571</pqid></control><display><type>article</type><title>Removal probability function for Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives</title><source>Elsevier</source><creator>Zhang, Hui ; Xing, Yan ; Gosálvez, Miguel A. ; Pal, Prem ; Sato, Kazuo</creator><creatorcontrib>Zhang, Hui ; Xing, Yan ; Gosálvez, Miguel A. ; Pal, Prem ; Sato, Kazuo</creatorcontrib><description>•A S-RPF Function is proposed for evolutionary KMC to simulate conformal wet etching.•A novel transformation matrix is introduced to fast determine the model parameters.•Much better accuracy in simulating conformal etching solutions than reported methods. A new Surfactant-based Removal Probability Function (S-RPF) is proposed to perform Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline solutions containing additives, such as tetramethyl ammonium hydroxide (TMAH) or potassium hydroxide (KOH) with small amounts of surfactants (e.g., Triton) and/or alcohols (e.g., Isopropanol=IPA). The S-RPF is built as the product of (i) a modified removal probability function (M-RPF), for pure etchants, and (ii) an additive inhibition term (I-RPF), which describes the orientation-dependent reduction in certain etch rates due to the selective adsorption of the additive on particular silicon surfaces. By construction these functions depend only on a few parameters, whose values are determined by an evolutionary algorithm (EA), which minimizes the differences between the experimental and simulated etch rates for a small set of silicon surfaces. In this respect, the paper introduces a transformation matrix to constrain the evolutionary search space, thus accelerating the convergence for both the M-RPF and I-RPF parameters. The simulated etch rates for numerous silicon orientations in TMAH+trion at different temperatures as well as KOH+IPA show good agreement with the experimental data. Compared to previous studies, the new S-RPF model describes the anisotropy at local etch rate maxima and minima around Si(100) and Si(110) with much better accuracy. The simulation of three-dimensional microstructures confirms the validity of the new S-RPF model for MEMS fabrication in alkaline etchants containing additives.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2015.07.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Additives ; Alcohol ; Anisotropy ; Computer simulation ; Etchants ; Etching ; Evolutionary algorithm ; Kinetic Monte Carlo ; KOH ; Mathematical models ; Monte Carlo methods ; Silicon ; Simulation ; Surfactant ; TMAH ; Wet etching</subject><ispartof>Sensors and actuators. A. Physical., 2015-09, Vol.233, p.451-459</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-5e491a088dd25c5208d4dd46a0b07e0b4d16b07b2b3394e342076e055daffb63</citedby><cites>FETCH-LOGICAL-c367t-5e491a088dd25c5208d4dd46a0b07e0b4d16b07b2b3394e342076e055daffb63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Xing, Yan</creatorcontrib><creatorcontrib>Gosálvez, Miguel A.</creatorcontrib><creatorcontrib>Pal, Prem</creatorcontrib><creatorcontrib>Sato, Kazuo</creatorcontrib><title>Removal probability function for Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives</title><title>Sensors and actuators. A. Physical.</title><description>•A S-RPF Function is proposed for evolutionary KMC to simulate conformal wet etching.•A novel transformation matrix is introduced to fast determine the model parameters.•Much better accuracy in simulating conformal etching solutions than reported methods. A new Surfactant-based Removal Probability Function (S-RPF) is proposed to perform Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline solutions containing additives, such as tetramethyl ammonium hydroxide (TMAH) or potassium hydroxide (KOH) with small amounts of surfactants (e.g., Triton) and/or alcohols (e.g., Isopropanol=IPA). The S-RPF is built as the product of (i) a modified removal probability function (M-RPF), for pure etchants, and (ii) an additive inhibition term (I-RPF), which describes the orientation-dependent reduction in certain etch rates due to the selective adsorption of the additive on particular silicon surfaces. By construction these functions depend only on a few parameters, whose values are determined by an evolutionary algorithm (EA), which minimizes the differences between the experimental and simulated etch rates for a small set of silicon surfaces. In this respect, the paper introduces a transformation matrix to constrain the evolutionary search space, thus accelerating the convergence for both the M-RPF and I-RPF parameters. The simulated etch rates for numerous silicon orientations in TMAH+trion at different temperatures as well as KOH+IPA show good agreement with the experimental data. Compared to previous studies, the new S-RPF model describes the anisotropy at local etch rate maxima and minima around Si(100) and Si(110) with much better accuracy. The simulation of three-dimensional microstructures confirms the validity of the new S-RPF model for MEMS fabrication in alkaline etchants containing additives.</description><subject>Additives</subject><subject>Alcohol</subject><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Etchants</subject><subject>Etching</subject><subject>Evolutionary algorithm</subject><subject>Kinetic Monte Carlo</subject><subject>KOH</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Silicon</subject><subject>Simulation</subject><subject>Surfactant</subject><subject>TMAH</subject><subject>Wet etching</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxaMKJJbCB-DmI5ek49iJs-KEVvypaIWEerccewKzeO3F9q7U78CHrsNy7mlGM7_3pPea5h2HjgMfb_ZdDqbrgQ8dqA4Ev2o2fFKiFTBuXzQb2Paylb1Ur5rXOe8BQAilNs3fH3iIZ-PZMcXZzOSpPLLlFGyhGNgSE_tGAQtZdh9DQbYzyUeW6XDyZkUyiwszgXIsKR4rhsX-ovBzPefqZqsLBWb8b-Or0b-3CSWz-iiGwooa56jQGfOb5uVifMa3_-d18_D508Pua3v3_cvt7uNda8WoSjug3HID0-RcP9ihh8lJ5-RoYAaFMEvHx7rN_SzEVqKQPagRYRicWZZ5FNfN-4ttzfznhLnoA2WL3puA8ZQ1n_pBTnxQvKL8gtoUc0646GOig0mPmoNei9d7XYvXa_EalK7FV82HiwZrhDNh0tkSBouOEtqiXaRn1E_-uY70</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Zhang, Hui</creator><creator>Xing, Yan</creator><creator>Gosálvez, Miguel A.</creator><creator>Pal, Prem</creator><creator>Sato, Kazuo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>Removal probability function for Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives</title><author>Zhang, Hui ; Xing, Yan ; Gosálvez, Miguel A. ; Pal, Prem ; Sato, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-5e491a088dd25c5208d4dd46a0b07e0b4d16b07b2b3394e342076e055daffb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Additives</topic><topic>Alcohol</topic><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Etchants</topic><topic>Etching</topic><topic>Evolutionary algorithm</topic><topic>Kinetic Monte Carlo</topic><topic>KOH</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Silicon</topic><topic>Simulation</topic><topic>Surfactant</topic><topic>TMAH</topic><topic>Wet etching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Xing, Yan</creatorcontrib><creatorcontrib>Gosálvez, Miguel A.</creatorcontrib><creatorcontrib>Pal, Prem</creatorcontrib><creatorcontrib>Sato, Kazuo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Xing, Yan</au><au>Gosálvez, Miguel A.</au><au>Pal, Prem</au><au>Sato, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal probability function for Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>233</volume><spage>451</spage><epage>459</epage><pages>451-459</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>•A S-RPF Function is proposed for evolutionary KMC to simulate conformal wet etching.•A novel transformation matrix is introduced to fast determine the model parameters.•Much better accuracy in simulating conformal etching solutions than reported methods. A new Surfactant-based Removal Probability Function (S-RPF) is proposed to perform Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline solutions containing additives, such as tetramethyl ammonium hydroxide (TMAH) or potassium hydroxide (KOH) with small amounts of surfactants (e.g., Triton) and/or alcohols (e.g., Isopropanol=IPA). The S-RPF is built as the product of (i) a modified removal probability function (M-RPF), for pure etchants, and (ii) an additive inhibition term (I-RPF), which describes the orientation-dependent reduction in certain etch rates due to the selective adsorption of the additive on particular silicon surfaces. By construction these functions depend only on a few parameters, whose values are determined by an evolutionary algorithm (EA), which minimizes the differences between the experimental and simulated etch rates for a small set of silicon surfaces. In this respect, the paper introduces a transformation matrix to constrain the evolutionary search space, thus accelerating the convergence for both the M-RPF and I-RPF parameters. The simulated etch rates for numerous silicon orientations in TMAH+trion at different temperatures as well as KOH+IPA show good agreement with the experimental data. Compared to previous studies, the new S-RPF model describes the anisotropy at local etch rate maxima and minima around Si(100) and Si(110) with much better accuracy. The simulation of three-dimensional microstructures confirms the validity of the new S-RPF model for MEMS fabrication in alkaline etchants containing additives.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2015.07.031</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2015-09, Vol.233, p.451-459
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_miscellaneous_1825481571
source Elsevier
subjects Additives
Alcohol
Anisotropy
Computer simulation
Etchants
Etching
Evolutionary algorithm
Kinetic Monte Carlo
KOH
Mathematical models
Monte Carlo methods
Silicon
Simulation
Surfactant
TMAH
Wet etching
title Removal probability function for Kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20probability%20function%20for%20Kinetic%20Monte%20Carlo%20simulations%20of%20anisotropic%20etching%20of%20silicon%20in%20alkaline%20etchants%20containing%20additives&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Zhang,%20Hui&rft.date=2015-09-01&rft.volume=233&rft.spage=451&rft.epage=459&rft.pages=451-459&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2015.07.031&rft_dat=%3Cproquest_cross%3E1825481571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-5e491a088dd25c5208d4dd46a0b07e0b4d16b07b2b3394e342076e055daffb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825481571&rft_id=info:pmid/&rfr_iscdi=true