Loading…

SiAlON-epoxy nanocomposite coatings: Corrosion and wear behavior

ABSTRACT In this study, epoxy powder as a matrix was combined with different contents of silicon–aluminum–oxygen–nitrogen (SiAlON) nanoparticles using a planetary ball mill. Pure epoxy and nanocomposite powders were applied on the surface of plain carbon steel components by the electrostatic sprayin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2016-09, Vol.133 (35), p.np-n/a
Main Authors: Moradi, M. H., Aliofkhazraei, M., Toorani, M., Golgoon, A., Rouhaghdam, A. Sabour
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT In this study, epoxy powder as a matrix was combined with different contents of silicon–aluminum–oxygen–nitrogen (SiAlON) nanoparticles using a planetary ball mill. Pure epoxy and nanocomposite powders were applied on the surface of plain carbon steel components by the electrostatic spraying method. Curing of the coatings was done in an oven or microwave for the appropriate time. The coating structure and morphology of the SiAlON nanoparticles were studied by scanning electron microscopy and transmission electron microscopy, respectively. The corrosion properties of the coatings were assessed by immersion, Tafel polarization, and electrochemical impedance spectroscopy tests in 3.5% NaCl solution. The results show that addition of 10 wt % SiAlON nanoparticles markedly increases the corrosion resistance of epoxy coatings. Thus, it can be inferred that the corrosion rate of these coatings is 15 to 18 times lower than that of pure epoxy samples and 8 to 11 times lower than coatings with 20 wt % SiAlON. The higher corrosion resistance of nanocomposite coatings can be attributed to the barrier properties of SiAlON nanoparticles. The tribological performance of the coatings was studied with the pin‐on‐disk test. The results of wear testing show that the samples containing 10 wt % SiAlON provide about five times more wear resistance than pure ones and about two times more than coatings with 20 wt % SiAlON. However, the coefficient of friction for nanocomposite coatings is reduced about 50% compared to the pure sample. Also, the curing process in either regime (oven or microwave) has the same effect on the corrosion and wear properties, and the coatings are completely crosslinked. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43855.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.43855