Loading…
Dissipativity analysis of memristive neural networks with time-varying delays and randomly occurring uncertainties
Dissipativity theory is a very important concept in the field of control system. In this paper, we pay attention to the problem of dissipativity analysis of memristive neural networks with time‐varying delay and randomly occurring uncertainties(ROUs). Under the framework of Filippov solution, differ...
Saved in:
Published in: | Mathematical methods in the applied sciences 2016-07, Vol.39 (11), p.2896-2915 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dissipativity theory is a very important concept in the field of control system. In this paper, we pay attention to the problem of dissipativity analysis of memristive neural networks with time‐varying delay and randomly occurring uncertainties(ROUs). Under the framework of Filippov solution, differential inclusion theory, by employing a proper Lyapunov functional, and some inequality techniques, the dissipativity criteria are obtained in terms of LMIs. It should be noteworthy that the uncertainty terms as well as the ROUs are separately taken into consideration, in which the uncertainties are norm‐bounded and the ROUs obey certain mutually uncorrelated Bernoulli‐distributed white noise sequences. Finally, the effectiveness of the proposed method will be verified via numerical example. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3738 |