Loading…

Silver Iodide-Chitosan Nanotag Induced Biocatalytic Precipitation for Self-Enhanced Ultrasensitive Photocathodic Immunosensor

In this work, we first exposed that the application of p-type semiconductor, silver iodide-chitosan nanoparticle (SICNP), acted as peroxidase mimetic to catalyze the bioprecipitation reaction for signal-amplification photocathodic immunosensing of human interleukin-6 (IL-6). After immobilization of...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2016-06, Vol.88 (11), p.5775-5782
Main Authors: Gong, Lingshan, Dai, Hong, Zhang, Shupei, Lin, Yanyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we first exposed that the application of p-type semiconductor, silver iodide-chitosan nanoparticle (SICNP), acted as peroxidase mimetic to catalyze the bioprecipitation reaction for signal-amplification photocathodic immunosensing of human interleukin-6 (IL-6). After immobilization of captured antibody onto a polyethylenimine-functionalized carbon nitride (CN) matrix, SICNPs as photoactive tags and peroxidase mimetics were labeled on secondary antibodies, which were subsequently introduced onto the sensing interface to construct sandwich immunoassay platform through antigen–antibody specific recognition. Due to the matched energy levels between CN and AgI, the photocurrent intensity and photostability of SICNP were dramatically improved with rapid separation and transportation of photogenerated carriers. Moreover, the insoluble product in effective biocatalytic precipitation reaction served as electron acceptor to scavenge the photoexcited electron, leading to great amplification of the photocurrent signal of SICNP again. With the help of multiamplification processes, this photocathodic immunosensor presented a turn-on photoelectrochemical performance for IL-6, which showed wide linear dynamic range from 10–6 to 10 pg/mL with the ultralow detection limit of 0.737 ag/mL. This work also performed the promising application of SICNP in developing an ultrasensitive, cost-effective, and enzyme-free photocathodic immunosensor for biomarkers.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.6b00297