Loading…
Interface preservation during Ge-rich source/drain contact formation
Contact engineering of Ge-rich source/drain is of critical importance for the development of advanced nano-scale CMOS technology nodes. Germanosilicide or Germanide contacts with low Schottky barrier height are highly desirable to achieve low contact resistance for a Ge-rich source/drain. However, p...
Saved in:
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Contact engineering of Ge-rich source/drain is of critical importance for the development of advanced nano-scale CMOS technology nodes. Germanosilicide or Germanide contacts with low Schottky barrier height are highly desirable to achieve low contact resistance for a Ge-rich source/drain. However, practical integration of Ge-rich SiGe into devices is complicated by its unique physical and chemical properties as compared to Si-rich epitaxial SiGe. We have observed significant erosion along the SiGe interface with its dielectric cap layer. The N2-H2 remote plasma resist strip process has been shown to trigger this erosion when GeO2 exists together with SiO2 at the interface. The integrity of Ge-rich SiGe contact interface can be preserved by replacing the N2-H2 remote plasma resist strip with an O2-based photoresist ash process. Cross-sectional STEM and EDX elemental analysis have confirmed Germanide and Germanosilicide formation at the Ge-rich SiGe contact interface. |
---|---|
ISSN: | 2376-6697 |
DOI: | 10.1109/ASMC.2016.7491158 |