Loading…

Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

We present the Neural‐network‐based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid r...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2016-05, Vol.121 (5), p.4611-4625
Main Authors: Zhelavskaya, I. S., Spasojevic, M., Shprits, Y. Y., Kurth, W. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5480-3d6332b5825b4c93ba53315c2494ea8ba86f57ab0a1e2c27f99a367759b00e363
cites cdi_FETCH-LOGICAL-c5480-3d6332b5825b4c93ba53315c2494ea8ba86f57ab0a1e2c27f99a367759b00e363
container_end_page 4625
container_issue 5
container_start_page 4611
container_title Journal of geophysical research. Space physics
container_volume 121
creator Zhelavskaya, I. S.
Spasojevic, M.
Shprits, Y. Y.
Kurth, W. S.
description We present the Neural‐network‐based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model. Key Points Developed neural network model to infer upper hybrid resonance line from plasma wave observations Applied model to 2425 orbits of Van Allen Probes data to determine electron number density Initial analysis of electron number density database as a function of L and MLT
doi_str_mv 10.1002/2015JA022132
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825510596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825510596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5480-3d6332b5825b4c93ba53315c2494ea8ba86f57ab0a1e2c27f99a367759b00e363</originalsourceid><addsrcrecordid>eNqN0U9LwzAYBvAiCo65mx8g4MWD1fxp2uRYhk5loIh6LWn6BjvaZiYpsm9vdBPEwzCX9-XlxwPhSZJTgi8JxvSKYsLvS0wpYfQgmVCSy1RmmB7-7Ezg42Tm_QrHJ-KJ8EliyzHYXgVoUAMBXN8OKrR2QNYg6EAHF_cGBt-GDTLO9rtrq5FpoWtQD8qPDnoYgkfRhjdAr2pAZdfBgB6drcEjv1YatFMmnCRHRnUeZrs5TV5urp_nt-nyYXE3L5ep5pnAKWtyxmjNBeV1piWrFWeMcE0zmYEStRK54YWqsSJANS2MlIrlRcFljTGwnE2T823u2tn3EXyo-tZr6Do1gB19RWIyJ5jL_1Ascl4QkUV69oeu7OiG-JGKxhJkVggi9ylSyDwq-p11sVXaWe8dmGrt2l65TUVw9dVo9bvRyNmWf7QdbPba6n7xVHKaU8w-Ad_Vn6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796947284</pqid></control><display><type>article</type><title>Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft</title><source>Wiley</source><creator>Zhelavskaya, I. S. ; Spasojevic, M. ; Shprits, Y. Y. ; Kurth, W. S.</creator><creatorcontrib>Zhelavskaya, I. S. ; Spasojevic, M. ; Shprits, Y. Y. ; Kurth, W. S.</creatorcontrib><description>We present the Neural‐network‐based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model. Key Points Developed neural network model to infer upper hybrid resonance line from plasma wave observations Applied model to 2425 orbits of Van Allen Probes data to determine electron number density Initial analysis of electron number density database as a function of L and MLT</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2015JA022132</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Density ; Density distribution ; Electric fields ; Electron density ; electron number density ; Empirical analysis ; Instrumentation ; Magnetic fields ; Magnetic resonance ; Mathematical models ; Missions ; Neural networks ; Plasma ; Plasma resonance ; Plasma waves ; Plasmasphere ; Probes ; Resonance ; Spacecraft ; Van Allen Probes ; Wave measurement</subject><ispartof>Journal of geophysical research. Space physics, 2016-05, Vol.121 (5), p.4611-4625</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5480-3d6332b5825b4c93ba53315c2494ea8ba86f57ab0a1e2c27f99a367759b00e363</citedby><cites>FETCH-LOGICAL-c5480-3d6332b5825b4c93ba53315c2494ea8ba86f57ab0a1e2c27f99a367759b00e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhelavskaya, I. S.</creatorcontrib><creatorcontrib>Spasojevic, M.</creatorcontrib><creatorcontrib>Shprits, Y. Y.</creatorcontrib><creatorcontrib>Kurth, W. S.</creatorcontrib><title>Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft</title><title>Journal of geophysical research. Space physics</title><description>We present the Neural‐network‐based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model. Key Points Developed neural network model to infer upper hybrid resonance line from plasma wave observations Applied model to 2425 orbits of Van Allen Probes data to determine electron number density Initial analysis of electron number density database as a function of L and MLT</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Density</subject><subject>Density distribution</subject><subject>Electric fields</subject><subject>Electron density</subject><subject>electron number density</subject><subject>Empirical analysis</subject><subject>Instrumentation</subject><subject>Magnetic fields</subject><subject>Magnetic resonance</subject><subject>Mathematical models</subject><subject>Missions</subject><subject>Neural networks</subject><subject>Plasma</subject><subject>Plasma resonance</subject><subject>Plasma waves</subject><subject>Plasmasphere</subject><subject>Probes</subject><subject>Resonance</subject><subject>Spacecraft</subject><subject>Van Allen Probes</subject><subject>Wave measurement</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0U9LwzAYBvAiCo65mx8g4MWD1fxp2uRYhk5loIh6LWn6BjvaZiYpsm9vdBPEwzCX9-XlxwPhSZJTgi8JxvSKYsLvS0wpYfQgmVCSy1RmmB7-7Ezg42Tm_QrHJ-KJ8EliyzHYXgVoUAMBXN8OKrR2QNYg6EAHF_cGBt-GDTLO9rtrq5FpoWtQD8qPDnoYgkfRhjdAr2pAZdfBgB6drcEjv1YatFMmnCRHRnUeZrs5TV5urp_nt-nyYXE3L5ep5pnAKWtyxmjNBeV1piWrFWeMcE0zmYEStRK54YWqsSJANS2MlIrlRcFljTGwnE2T823u2tn3EXyo-tZr6Do1gB19RWIyJ5jL_1Ascl4QkUV69oeu7OiG-JGKxhJkVggi9ylSyDwq-p11sVXaWe8dmGrt2l65TUVw9dVo9bvRyNmWf7QdbPba6n7xVHKaU8w-Ad_Vn6o</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Zhelavskaya, I. S.</creator><creator>Spasojevic, M.</creator><creator>Shprits, Y. Y.</creator><creator>Kurth, W. S.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201605</creationdate><title>Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft</title><author>Zhelavskaya, I. S. ; Spasojevic, M. ; Shprits, Y. Y. ; Kurth, W. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5480-3d6332b5825b4c93ba53315c2494ea8ba86f57ab0a1e2c27f99a367759b00e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Density</topic><topic>Density distribution</topic><topic>Electric fields</topic><topic>Electron density</topic><topic>electron number density</topic><topic>Empirical analysis</topic><topic>Instrumentation</topic><topic>Magnetic fields</topic><topic>Magnetic resonance</topic><topic>Mathematical models</topic><topic>Missions</topic><topic>Neural networks</topic><topic>Plasma</topic><topic>Plasma resonance</topic><topic>Plasma waves</topic><topic>Plasmasphere</topic><topic>Probes</topic><topic>Resonance</topic><topic>Spacecraft</topic><topic>Van Allen Probes</topic><topic>Wave measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhelavskaya, I. S.</creatorcontrib><creatorcontrib>Spasojevic, M.</creatorcontrib><creatorcontrib>Shprits, Y. Y.</creatorcontrib><creatorcontrib>Kurth, W. S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhelavskaya, I. S.</au><au>Spasojevic, M.</au><au>Shprits, Y. Y.</au><au>Kurth, W. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-05</date><risdate>2016</risdate><volume>121</volume><issue>5</issue><spage>4611</spage><epage>4625</epage><pages>4611-4625</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We present the Neural‐network‐based Upper hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made on board NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model. Key Points Developed neural network model to infer upper hybrid resonance line from plasma wave observations Applied model to 2425 orbits of Van Allen Probes data to determine electron number density Initial analysis of electron number density database as a function of L and MLT</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JA022132</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2016-05, Vol.121 (5), p.4611-4625
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_miscellaneous_1825510596
source Wiley
subjects Algorithms
Artificial neural networks
Automation
Density
Density distribution
Electric fields
Electron density
electron number density
Empirical analysis
Instrumentation
Magnetic fields
Magnetic resonance
Mathematical models
Missions
Neural networks
Plasma
Plasma resonance
Plasma waves
Plasmasphere
Probes
Resonance
Spacecraft
Van Allen Probes
Wave measurement
title Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20determination%20of%20electron%20density%20from%20electric%20field%20measurements%20on%20the%20Van%20Allen%20Probes%20spacecraft&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Zhelavskaya,%20I.%20S.&rft.date=2016-05&rft.volume=121&rft.issue=5&rft.spage=4611&rft.epage=4625&rft.pages=4611-4625&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2015JA022132&rft_dat=%3Cproquest_cross%3E1825510596%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5480-3d6332b5825b4c93ba53315c2494ea8ba86f57ab0a1e2c27f99a367759b00e363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1796947284&rft_id=info:pmid/&rfr_iscdi=true