Loading…
H, He-like recombination spectra – I. l-changing collisions for hydrogen
Hydrogen and helium emission lines in nebulae form by radiative recombination. This is a simple process which, in principle, can be described to very high precision. Ratios of He i and H i emission lines can be used to measure the He+/H+ abundance ratio to the same precision as the recombination rat...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2016-07, Vol.459 (4), p.3498-3504 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrogen and helium emission lines in nebulae form by radiative recombination. This is a simple process which, in principle, can be described to very high precision. Ratios of He i and H i emission lines can be used to measure the He+/H+ abundance ratio to the same precision as the recombination rate coefficients. This paper investigates the controversy over the correct theory to describe dipole l-changing collisions (nl → nl′ = l ± 1) between energy-degenerate states within an n-shell. The work of Pengelly & Seaton has, for half-a-century, been considered the definitive study which ‘solved’ the problem. Recent work by Vrinceanu et al. recommended the use of rate coefficients from a semiclassical approximation which are nearly an order of magnitude smaller than those of Pengelly & Seaton, with the result that significantly higher densities are needed for the nl populations to come into local thermodynamic equilibrium. Here, we compare predicted H i emissivities from the two works and find widespread differences, of up to ≈10 per cent. This far exceeds the 1 per cent precision required to obtain the primordial He/H abundance ratio from observations so as to constrain big bang cosmologies. We recommend using the rate coefficients of Pengelly & Seaton for l-changing collisions, to describe the H recombination spectrum, based-on their quantum mechanical representation of the long-range dipole interaction. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stw893 |