Loading…

Binary stars can provide the ‘missing photons’ needed for reionization

Empirical constraints on reionization require galactic ionizing photon escape fractions f esc ≳ 20 per cent, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ∼1–5 per cent. While these models include strong stellar feedback and additional proce...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2016-07, Vol.459 (4), p.3614-3619
Main Authors: Ma, Xiangcheng, Hopkins, Philip F., Kasen, Daniel, Quataert, Eliot, Faucher-Giguère, Claude-André, Kereš, Dušan, Murray, Norman, Strom, Allison
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Empirical constraints on reionization require galactic ionizing photon escape fractions f esc ≳ 20 per cent, but recent high-resolution radiation-hydrodynamic calculations have consistently found much lower values ∼1–5 per cent. While these models include strong stellar feedback and additional processes such as runaway stars, they almost exclusively consider stellar evolution models based on single (isolated) stars, despite the fact that most massive stars are in binaries. We re-visit these calculations, combining radiative transfer and high-resolution cosmological simulations with detailed models for stellar feedback from the Feedback in Realistic Environments project. For the first time, we use a stellar evolution model that includes a physically and observationally motivated treatment of binaries (the Binary Population and Spectral Synthesis model). Binary mass transfer and mergers enhance the population of massive stars at late times (≳3 Myr) after star formation, which in turn strongly enhances the late-time ionizing photon production (especially at low metallicities). These photons are produced after feedback from massive stars has carved escape channels in the interstellar medium, and so efficiently leak out of galaxies. As a result, the time-averaged ‘effective’ escape fraction (ratio of escaped ionizing photons to observed 1500 Å photons) increases by factors ∼4–10, sufficient to explain reionization. While important uncertainties remain, we conclude that binary evolution may be critical for understanding the ionization of the Universe.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw941