Loading…
Synthetic evolutionary origin of a proofreading reverse transcriptase
Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functio...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2016-06, Vol.352 (6293), p.1590-1593 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263 |
---|---|
cites | cdi_FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263 |
container_end_page | 1593 |
container_issue | 6293 |
container_start_page | 1590 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 352 |
creator | Ellefson, Jared W. Gollihar, Jimmy Shroff, Raghav Shivram, Haridha Iyer, Vishwanath R. Ellington, Andrew D. |
description | Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription–polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription. |
doi_str_mv | 10.1126/science.aaf5409 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825521795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24747511</jstor_id><sourcerecordid>24747511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263</originalsourceid><addsrcrecordid>eNqNkTtPwzAUhS0EoqUwM4EisbCk9SOOc0dUlYdUiYHukePeFFdtXOykUv89hhaQmDrd4Xz33Mch5JrRIWM8HwVjsTE41LqWGYUT0mcUZAqcilPSp1TkaUGV7JGLEJaURg3EOelxJQQA0D6ZvO2a9h1baxLculXXWtdov0uctwvbJK5OdLLxztUe9dw2i8TjFn3ApPW6CcbbTasDXpKzWq8CXh3qgMweJ7Pxczp9fXoZP0xTI6Vq06ISvGKVYjKrmIYcC5plKqulzApNAedVQQWwAoTJBBSGzzXnhmGdV6h5Lgbkfm8bN_roMLTl2gaDq5Vu0HWhZAWXkjMF8giUAROgjnFVAFJCzrOI3v1Dl67zTTz5m-KKC8YiNdpTxrsQPNblxtt1_GrJaPkVW3mIrTzEFjtuD75dtcb5L_-TUwRu9sAytM7_6fF7SsaRnzwOnb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799272311</pqid></control><display><type>article</type><title>Synthetic evolutionary origin of a proofreading reverse transcriptase</title><source>Science Magazine</source><source>Alma/SFX Local Collection</source><creator>Ellefson, Jared W. ; Gollihar, Jimmy ; Shroff, Raghav ; Shivram, Haridha ; Iyer, Vishwanath R. ; Ellington, Andrew D.</creator><creatorcontrib>Ellefson, Jared W. ; Gollihar, Jimmy ; Shroff, Raghav ; Shivram, Haridha ; Iyer, Vishwanath R. ; Ellington, Andrew D.</creatorcontrib><description>Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription–polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaf5409</identifier><identifier>PMID: 27339990</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biological evolution ; Deoxyribonucleic acid ; Directed Molecular Evolution ; DNA Mismatch Repair ; DNA Mutational Analysis ; DNA polymerase ; DNA, Complementary - biosynthesis ; Enzymes ; Evolution, Molecular ; Evolutionary ; Exonucleases - chemistry ; Fidelity ; Models, Molecular ; Origins ; Phylogeny ; Proofreading ; Protein Structure, Tertiary ; Proteins ; Pyrococcus furiosus - enzymology ; Ribonucleic acid ; Ribonucleic acids ; RNA ; RNA - chemistry ; RNA - genetics ; RNA-Directed DNA Polymerase - chemistry ; RNA-Directed DNA Polymerase - classification ; RNA-Directed DNA Polymerase - genetics ; Templates, Genetic ; Thermococcus - enzymology</subject><ispartof>Science (American Association for the Advancement of Science), 2016-06, Vol.352 (6293), p.1590-1593</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science.</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263</citedby><cites>FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27339990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellefson, Jared W.</creatorcontrib><creatorcontrib>Gollihar, Jimmy</creatorcontrib><creatorcontrib>Shroff, Raghav</creatorcontrib><creatorcontrib>Shivram, Haridha</creatorcontrib><creatorcontrib>Iyer, Vishwanath R.</creatorcontrib><creatorcontrib>Ellington, Andrew D.</creatorcontrib><title>Synthetic evolutionary origin of a proofreading reverse transcriptase</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription–polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription.</description><subject>Biological evolution</subject><subject>Deoxyribonucleic acid</subject><subject>Directed Molecular Evolution</subject><subject>DNA Mismatch Repair</subject><subject>DNA Mutational Analysis</subject><subject>DNA polymerase</subject><subject>DNA, Complementary - biosynthesis</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Evolutionary</subject><subject>Exonucleases - chemistry</subject><subject>Fidelity</subject><subject>Models, Molecular</subject><subject>Origins</subject><subject>Phylogeny</subject><subject>Proofreading</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Ribonucleic acid</subject><subject>Ribonucleic acids</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>RNA-Directed DNA Polymerase - chemistry</subject><subject>RNA-Directed DNA Polymerase - classification</subject><subject>RNA-Directed DNA Polymerase - genetics</subject><subject>Templates, Genetic</subject><subject>Thermococcus - enzymology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkTtPwzAUhS0EoqUwM4EisbCk9SOOc0dUlYdUiYHukePeFFdtXOykUv89hhaQmDrd4Xz33Mch5JrRIWM8HwVjsTE41LqWGYUT0mcUZAqcilPSp1TkaUGV7JGLEJaURg3EOelxJQQA0D6ZvO2a9h1baxLculXXWtdov0uctwvbJK5OdLLxztUe9dw2i8TjFn3ApPW6CcbbTasDXpKzWq8CXh3qgMweJ7Pxczp9fXoZP0xTI6Vq06ISvGKVYjKrmIYcC5plKqulzApNAedVQQWwAoTJBBSGzzXnhmGdV6h5Lgbkfm8bN_roMLTl2gaDq5Vu0HWhZAWXkjMF8giUAROgjnFVAFJCzrOI3v1Dl67zTTz5m-KKC8YiNdpTxrsQPNblxtt1_GrJaPkVW3mIrTzEFjtuD75dtcb5L_-TUwRu9sAytM7_6fF7SsaRnzwOnb8</recordid><startdate>20160624</startdate><enddate>20160624</enddate><creator>Ellefson, Jared W.</creator><creator>Gollihar, Jimmy</creator><creator>Shroff, Raghav</creator><creator>Shivram, Haridha</creator><creator>Iyer, Vishwanath R.</creator><creator>Ellington, Andrew D.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160624</creationdate><title>Synthetic evolutionary origin of a proofreading reverse transcriptase</title><author>Ellefson, Jared W. ; Gollihar, Jimmy ; Shroff, Raghav ; Shivram, Haridha ; Iyer, Vishwanath R. ; Ellington, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological evolution</topic><topic>Deoxyribonucleic acid</topic><topic>Directed Molecular Evolution</topic><topic>DNA Mismatch Repair</topic><topic>DNA Mutational Analysis</topic><topic>DNA polymerase</topic><topic>DNA, Complementary - biosynthesis</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Evolutionary</topic><topic>Exonucleases - chemistry</topic><topic>Fidelity</topic><topic>Models, Molecular</topic><topic>Origins</topic><topic>Phylogeny</topic><topic>Proofreading</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Ribonucleic acid</topic><topic>Ribonucleic acids</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>RNA-Directed DNA Polymerase - chemistry</topic><topic>RNA-Directed DNA Polymerase - classification</topic><topic>RNA-Directed DNA Polymerase - genetics</topic><topic>Templates, Genetic</topic><topic>Thermococcus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellefson, Jared W.</creatorcontrib><creatorcontrib>Gollihar, Jimmy</creatorcontrib><creatorcontrib>Shroff, Raghav</creatorcontrib><creatorcontrib>Shivram, Haridha</creatorcontrib><creatorcontrib>Iyer, Vishwanath R.</creatorcontrib><creatorcontrib>Ellington, Andrew D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellefson, Jared W.</au><au>Gollihar, Jimmy</au><au>Shroff, Raghav</au><au>Shivram, Haridha</au><au>Iyer, Vishwanath R.</au><au>Ellington, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic evolutionary origin of a proofreading reverse transcriptase</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2016-06-24</date><risdate>2016</risdate><volume>352</volume><issue>6293</issue><spage>1590</spage><epage>1593</epage><pages>1590-1593</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription–polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27339990</pmid><doi>10.1126/science.aaf5409</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2016-06, Vol.352 (6293), p.1590-1593 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825521795 |
source | Science Magazine; Alma/SFX Local Collection |
subjects | Biological evolution Deoxyribonucleic acid Directed Molecular Evolution DNA Mismatch Repair DNA Mutational Analysis DNA polymerase DNA, Complementary - biosynthesis Enzymes Evolution, Molecular Evolutionary Exonucleases - chemistry Fidelity Models, Molecular Origins Phylogeny Proofreading Protein Structure, Tertiary Proteins Pyrococcus furiosus - enzymology Ribonucleic acid Ribonucleic acids RNA RNA - chemistry RNA - genetics RNA-Directed DNA Polymerase - chemistry RNA-Directed DNA Polymerase - classification RNA-Directed DNA Polymerase - genetics Templates, Genetic Thermococcus - enzymology |
title | Synthetic evolutionary origin of a proofreading reverse transcriptase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20evolutionary%20origin%20of%20a%20proofreading%20reverse%20transcriptase&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ellefson,%20Jared%20W.&rft.date=2016-06-24&rft.volume=352&rft.issue=6293&rft.spage=1590&rft.epage=1593&rft.pages=1590-1593&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaf5409&rft_dat=%3Cjstor_proqu%3E24747511%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1799272311&rft_id=info:pmid/27339990&rft_jstor_id=24747511&rfr_iscdi=true |