Loading…

Synthetic evolutionary origin of a proofreading reverse transcriptase

Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functio...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2016-06, Vol.352 (6293), p.1590-1593
Main Authors: Ellefson, Jared W., Gollihar, Jimmy, Shroff, Raghav, Shivram, Haridha, Iyer, Vishwanath R., Ellington, Andrew D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263
cites cdi_FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263
container_end_page 1593
container_issue 6293
container_start_page 1590
container_title Science (American Association for the Advancement of Science)
container_volume 352
creator Ellefson, Jared W.
Gollihar, Jimmy
Shroff, Raghav
Shivram, Haridha
Iyer, Vishwanath R.
Ellington, Andrew D.
description Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription–polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription.
doi_str_mv 10.1126/science.aaf5409
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825521795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24747511</jstor_id><sourcerecordid>24747511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263</originalsourceid><addsrcrecordid>eNqNkTtPwzAUhS0EoqUwM4EisbCk9SOOc0dUlYdUiYHukePeFFdtXOykUv89hhaQmDrd4Xz33Mch5JrRIWM8HwVjsTE41LqWGYUT0mcUZAqcilPSp1TkaUGV7JGLEJaURg3EOelxJQQA0D6ZvO2a9h1baxLculXXWtdov0uctwvbJK5OdLLxztUe9dw2i8TjFn3ApPW6CcbbTasDXpKzWq8CXh3qgMweJ7Pxczp9fXoZP0xTI6Vq06ISvGKVYjKrmIYcC5plKqulzApNAedVQQWwAoTJBBSGzzXnhmGdV6h5Lgbkfm8bN_roMLTl2gaDq5Vu0HWhZAWXkjMF8giUAROgjnFVAFJCzrOI3v1Dl67zTTz5m-KKC8YiNdpTxrsQPNblxtt1_GrJaPkVW3mIrTzEFjtuD75dtcb5L_-TUwRu9sAytM7_6fF7SsaRnzwOnb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799272311</pqid></control><display><type>article</type><title>Synthetic evolutionary origin of a proofreading reverse transcriptase</title><source>Science Magazine</source><source>Alma/SFX Local Collection</source><creator>Ellefson, Jared W. ; Gollihar, Jimmy ; Shroff, Raghav ; Shivram, Haridha ; Iyer, Vishwanath R. ; Ellington, Andrew D.</creator><creatorcontrib>Ellefson, Jared W. ; Gollihar, Jimmy ; Shroff, Raghav ; Shivram, Haridha ; Iyer, Vishwanath R. ; Ellington, Andrew D.</creatorcontrib><description>Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription–polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaf5409</identifier><identifier>PMID: 27339990</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biological evolution ; Deoxyribonucleic acid ; Directed Molecular Evolution ; DNA Mismatch Repair ; DNA Mutational Analysis ; DNA polymerase ; DNA, Complementary - biosynthesis ; Enzymes ; Evolution, Molecular ; Evolutionary ; Exonucleases - chemistry ; Fidelity ; Models, Molecular ; Origins ; Phylogeny ; Proofreading ; Protein Structure, Tertiary ; Proteins ; Pyrococcus furiosus - enzymology ; Ribonucleic acid ; Ribonucleic acids ; RNA ; RNA - chemistry ; RNA - genetics ; RNA-Directed DNA Polymerase - chemistry ; RNA-Directed DNA Polymerase - classification ; RNA-Directed DNA Polymerase - genetics ; Templates, Genetic ; Thermococcus - enzymology</subject><ispartof>Science (American Association for the Advancement of Science), 2016-06, Vol.352 (6293), p.1590-1593</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science.</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263</citedby><cites>FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27339990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ellefson, Jared W.</creatorcontrib><creatorcontrib>Gollihar, Jimmy</creatorcontrib><creatorcontrib>Shroff, Raghav</creatorcontrib><creatorcontrib>Shivram, Haridha</creatorcontrib><creatorcontrib>Iyer, Vishwanath R.</creatorcontrib><creatorcontrib>Ellington, Andrew D.</creatorcontrib><title>Synthetic evolutionary origin of a proofreading reverse transcriptase</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription–polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription.</description><subject>Biological evolution</subject><subject>Deoxyribonucleic acid</subject><subject>Directed Molecular Evolution</subject><subject>DNA Mismatch Repair</subject><subject>DNA Mutational Analysis</subject><subject>DNA polymerase</subject><subject>DNA, Complementary - biosynthesis</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Evolutionary</subject><subject>Exonucleases - chemistry</subject><subject>Fidelity</subject><subject>Models, Molecular</subject><subject>Origins</subject><subject>Phylogeny</subject><subject>Proofreading</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Ribonucleic acid</subject><subject>Ribonucleic acids</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>RNA-Directed DNA Polymerase - chemistry</subject><subject>RNA-Directed DNA Polymerase - classification</subject><subject>RNA-Directed DNA Polymerase - genetics</subject><subject>Templates, Genetic</subject><subject>Thermococcus - enzymology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkTtPwzAUhS0EoqUwM4EisbCk9SOOc0dUlYdUiYHukePeFFdtXOykUv89hhaQmDrd4Xz33Mch5JrRIWM8HwVjsTE41LqWGYUT0mcUZAqcilPSp1TkaUGV7JGLEJaURg3EOelxJQQA0D6ZvO2a9h1baxLculXXWtdov0uctwvbJK5OdLLxztUe9dw2i8TjFn3ApPW6CcbbTasDXpKzWq8CXh3qgMweJ7Pxczp9fXoZP0xTI6Vq06ISvGKVYjKrmIYcC5plKqulzApNAedVQQWwAoTJBBSGzzXnhmGdV6h5Lgbkfm8bN_roMLTl2gaDq5Vu0HWhZAWXkjMF8giUAROgjnFVAFJCzrOI3v1Dl67zTTz5m-KKC8YiNdpTxrsQPNblxtt1_GrJaPkVW3mIrTzEFjtuD75dtcb5L_-TUwRu9sAytM7_6fF7SsaRnzwOnb8</recordid><startdate>20160624</startdate><enddate>20160624</enddate><creator>Ellefson, Jared W.</creator><creator>Gollihar, Jimmy</creator><creator>Shroff, Raghav</creator><creator>Shivram, Haridha</creator><creator>Iyer, Vishwanath R.</creator><creator>Ellington, Andrew D.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160624</creationdate><title>Synthetic evolutionary origin of a proofreading reverse transcriptase</title><author>Ellefson, Jared W. ; Gollihar, Jimmy ; Shroff, Raghav ; Shivram, Haridha ; Iyer, Vishwanath R. ; Ellington, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological evolution</topic><topic>Deoxyribonucleic acid</topic><topic>Directed Molecular Evolution</topic><topic>DNA Mismatch Repair</topic><topic>DNA Mutational Analysis</topic><topic>DNA polymerase</topic><topic>DNA, Complementary - biosynthesis</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Evolutionary</topic><topic>Exonucleases - chemistry</topic><topic>Fidelity</topic><topic>Models, Molecular</topic><topic>Origins</topic><topic>Phylogeny</topic><topic>Proofreading</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Ribonucleic acid</topic><topic>Ribonucleic acids</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>RNA-Directed DNA Polymerase - chemistry</topic><topic>RNA-Directed DNA Polymerase - classification</topic><topic>RNA-Directed DNA Polymerase - genetics</topic><topic>Templates, Genetic</topic><topic>Thermococcus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ellefson, Jared W.</creatorcontrib><creatorcontrib>Gollihar, Jimmy</creatorcontrib><creatorcontrib>Shroff, Raghav</creatorcontrib><creatorcontrib>Shivram, Haridha</creatorcontrib><creatorcontrib>Iyer, Vishwanath R.</creatorcontrib><creatorcontrib>Ellington, Andrew D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ellefson, Jared W.</au><au>Gollihar, Jimmy</au><au>Shroff, Raghav</au><au>Shivram, Haridha</au><au>Iyer, Vishwanath R.</au><au>Ellington, Andrew D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic evolutionary origin of a proofreading reverse transcriptase</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2016-06-24</date><risdate>2016</risdate><volume>352</volume><issue>6293</issue><spage>1590</spage><epage>1593</epage><pages>1590-1593</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Most reverse transcriptase (RT) enzymes belong to a single protein family of ancient evolutionary origin. These polymerases are inherently error prone, owing to their lack of a proofreading (3′- 5′ exonuclease) domain. To determine if the lack of proofreading is a historical coincidence or a functional limitation of reverse transcription, we attempted to evolve a high-fidelity, thermostable DNA polymerase to use RNA templates efficiently. The evolutionarily distinct reverse transcription xenopolymerase (RTX) actively proofreads on DNA and RNA templates, which greatly improves RT fidelity. In addition, RTX enables applications such as single-enzyme reverse transcription–polymerase chain reaction and direct RNA sequencing without complementary DNA isolation. The creation of RTX confirms that proofreading is compatible with reverse transcription.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27339990</pmid><doi>10.1126/science.aaf5409</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2016-06, Vol.352 (6293), p.1590-1593
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1825521795
source Science Magazine; Alma/SFX Local Collection
subjects Biological evolution
Deoxyribonucleic acid
Directed Molecular Evolution
DNA Mismatch Repair
DNA Mutational Analysis
DNA polymerase
DNA, Complementary - biosynthesis
Enzymes
Evolution, Molecular
Evolutionary
Exonucleases - chemistry
Fidelity
Models, Molecular
Origins
Phylogeny
Proofreading
Protein Structure, Tertiary
Proteins
Pyrococcus furiosus - enzymology
Ribonucleic acid
Ribonucleic acids
RNA
RNA - chemistry
RNA - genetics
RNA-Directed DNA Polymerase - chemistry
RNA-Directed DNA Polymerase - classification
RNA-Directed DNA Polymerase - genetics
Templates, Genetic
Thermococcus - enzymology
title Synthetic evolutionary origin of a proofreading reverse transcriptase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20evolutionary%20origin%20of%20a%20proofreading%20reverse%20transcriptase&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ellefson,%20Jared%20W.&rft.date=2016-06-24&rft.volume=352&rft.issue=6293&rft.spage=1590&rft.epage=1593&rft.pages=1590-1593&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaf5409&rft_dat=%3Cjstor_proqu%3E24747511%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-8b32b1b7154b1a96e804474f5548a09edb80391893c4398c2da22c1ef6bea263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1799272311&rft_id=info:pmid/27339990&rft_jstor_id=24747511&rfr_iscdi=true