Loading…

Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide

MXenes comprise a new class of solution‐dispersable, 2D nanomaterials formed from transition metal carbides and nitrides such as Ti3C2. Here, it is shown that 2D Ti3C2 can be assembled from aqueous solutions into optical quality, nanometer thin films that, at 6500 S cm−1, surpass the conductivity of...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2016-06, Vol.26 (23), p.4162-4168
Main Authors: Dillon, Andrew D., Ghidiu, Michael J., Krick, Alex L., Griggs, Justin, May, Steven J., Gogotsi, Yury, Barsoum, Michel W., Fafarman, Aaron T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4267-8a41dad5b822a3621d753909db3eed6c799c312ec404c41a74d52c544d58c2dc3
cites cdi_FETCH-LOGICAL-c4267-8a41dad5b822a3621d753909db3eed6c799c312ec404c41a74d52c544d58c2dc3
container_end_page 4168
container_issue 23
container_start_page 4162
container_title Advanced functional materials
container_volume 26
creator Dillon, Andrew D.
Ghidiu, Michael J.
Krick, Alex L.
Griggs, Justin
May, Steven J.
Gogotsi, Yury
Barsoum, Michel W.
Fafarman, Aaron T.
description MXenes comprise a new class of solution‐dispersable, 2D nanomaterials formed from transition metal carbides and nitrides such as Ti3C2. Here, it is shown that 2D Ti3C2 can be assembled from aqueous solutions into optical quality, nanometer thin films that, at 6500 S cm−1, surpass the conductivity of other solution‐processed 2D materials, while simultaneously transmitting >97% of visible light per‐nanometer thickness. It is shown that this high conductivity is due to a metal‐like free‐electron density as well as a high degree of coplanar alignment of individual nanosheets achieved through spincasting. Consequently, the spincast films exhibit conductivity over a macroscopic scale that is comparable to the intrinsic conductivity of the constituent 2D sheets. Additionally, optical characterization over the ultraviolet‐to‐near‐infrared range reveals the onset of free‐electron plasma oscillations above 1130 nm. Ti3C2 is therefore a potential building block for plasmonic applications at near‐infrared wavelengths and constitutes the first example of a new class of solution‐processed, carbide‐based 2D optoelectronic materials. An aqueous colloidal Ti3C2‐based MXene is assembled by spincasting into highly aligned, optical‐quality films with a conductivity of 6500 S cm−1. The electrical and optical properties of this material are measured revealing that it is plasmonic in the near‐infrared. Comparison of the in‐plane DC conductivity and the optical conductivity indicates that the macroscopic material is nearly as conductive as the constituent nanosheets.
doi_str_mv 10.1002/adfm.201600357
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825522154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825522154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4267-8a41dad5b822a3621d753909db3eed6c799c312ec404c41a74d52c544d58c2dc3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURiMEEqWwMntkSfEzTsYq0BbUUiqKilgs13bA4CQlToD8e1oFVWxM3x3OucMJgnMEBwhCfCl1lg8wRBGEhPGDoIciFIUE4vhwf6On4-DE-zcIEeeE9oLFxL68uhakZaEbVdtPA-ab2irpwKKRztYteChdU9uyCO-rUhnvjQYj63IPygzgK7C0tSxsk4NUVmurzWlwlEnnzdnv9oPH0fUynYTT-fgmHU5DRXHEw1hSpKVm6xhjSSKMNGckgYleE2N0pHiSKIKwURRSRZHkVDOsGN1OrLBWpB9cdH83VfnRGF-L3HplnJOFKRsvUIwZwxgxukUHHaqq0vvKZGJT2VxWrUBQ7NqJXTuxb7cVkk74ss60_9BieDWa_XXDzrW-Nt97V1bvIuKEM7G6GwsULW_HdDUTz-QH0zGBrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825522154</pqid></control><display><type>article</type><title>Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Dillon, Andrew D. ; Ghidiu, Michael J. ; Krick, Alex L. ; Griggs, Justin ; May, Steven J. ; Gogotsi, Yury ; Barsoum, Michel W. ; Fafarman, Aaron T.</creator><creatorcontrib>Dillon, Andrew D. ; Ghidiu, Michael J. ; Krick, Alex L. ; Griggs, Justin ; May, Steven J. ; Gogotsi, Yury ; Barsoum, Michel W. ; Fafarman, Aaron T.</creatorcontrib><description>MXenes comprise a new class of solution‐dispersable, 2D nanomaterials formed from transition metal carbides and nitrides such as Ti3C2. Here, it is shown that 2D Ti3C2 can be assembled from aqueous solutions into optical quality, nanometer thin films that, at 6500 S cm−1, surpass the conductivity of other solution‐processed 2D materials, while simultaneously transmitting &gt;97% of visible light per‐nanometer thickness. It is shown that this high conductivity is due to a metal‐like free‐electron density as well as a high degree of coplanar alignment of individual nanosheets achieved through spincasting. Consequently, the spincast films exhibit conductivity over a macroscopic scale that is comparable to the intrinsic conductivity of the constituent 2D sheets. Additionally, optical characterization over the ultraviolet‐to‐near‐infrared range reveals the onset of free‐electron plasma oscillations above 1130 nm. Ti3C2 is therefore a potential building block for plasmonic applications at near‐infrared wavelengths and constitutes the first example of a new class of solution‐processed, carbide‐based 2D optoelectronic materials. An aqueous colloidal Ti3C2‐based MXene is assembled by spincasting into highly aligned, optical‐quality films with a conductivity of 6500 S cm−1. The electrical and optical properties of this material are measured revealing that it is plasmonic in the near‐infrared. Comparison of the in‐plane DC conductivity and the optical conductivity indicates that the macroscopic material is nearly as conductive as the constituent nanosheets.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201600357</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>2D materials ; Alignment ; Conductivity ; Constituents ; MXenes ; Nanostructure ; Optical properties ; Plasmonics ; Resistivity ; solution-processed ; transparent conductors ; Two dimensional</subject><ispartof>Advanced functional materials, 2016-06, Vol.26 (23), p.4162-4168</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4267-8a41dad5b822a3621d753909db3eed6c799c312ec404c41a74d52c544d58c2dc3</citedby><cites>FETCH-LOGICAL-c4267-8a41dad5b822a3621d753909db3eed6c799c312ec404c41a74d52c544d58c2dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dillon, Andrew D.</creatorcontrib><creatorcontrib>Ghidiu, Michael J.</creatorcontrib><creatorcontrib>Krick, Alex L.</creatorcontrib><creatorcontrib>Griggs, Justin</creatorcontrib><creatorcontrib>May, Steven J.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Barsoum, Michel W.</creatorcontrib><creatorcontrib>Fafarman, Aaron T.</creatorcontrib><title>Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>MXenes comprise a new class of solution‐dispersable, 2D nanomaterials formed from transition metal carbides and nitrides such as Ti3C2. Here, it is shown that 2D Ti3C2 can be assembled from aqueous solutions into optical quality, nanometer thin films that, at 6500 S cm−1, surpass the conductivity of other solution‐processed 2D materials, while simultaneously transmitting &gt;97% of visible light per‐nanometer thickness. It is shown that this high conductivity is due to a metal‐like free‐electron density as well as a high degree of coplanar alignment of individual nanosheets achieved through spincasting. Consequently, the spincast films exhibit conductivity over a macroscopic scale that is comparable to the intrinsic conductivity of the constituent 2D sheets. Additionally, optical characterization over the ultraviolet‐to‐near‐infrared range reveals the onset of free‐electron plasma oscillations above 1130 nm. Ti3C2 is therefore a potential building block for plasmonic applications at near‐infrared wavelengths and constitutes the first example of a new class of solution‐processed, carbide‐based 2D optoelectronic materials. An aqueous colloidal Ti3C2‐based MXene is assembled by spincasting into highly aligned, optical‐quality films with a conductivity of 6500 S cm−1. The electrical and optical properties of this material are measured revealing that it is plasmonic in the near‐infrared. Comparison of the in‐plane DC conductivity and the optical conductivity indicates that the macroscopic material is nearly as conductive as the constituent nanosheets.</description><subject>2D materials</subject><subject>Alignment</subject><subject>Conductivity</subject><subject>Constituents</subject><subject>MXenes</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Plasmonics</subject><subject>Resistivity</subject><subject>solution-processed</subject><subject>transparent conductors</subject><subject>Two dimensional</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURiMEEqWwMntkSfEzTsYq0BbUUiqKilgs13bA4CQlToD8e1oFVWxM3x3OucMJgnMEBwhCfCl1lg8wRBGEhPGDoIciFIUE4vhwf6On4-DE-zcIEeeE9oLFxL68uhakZaEbVdtPA-ab2irpwKKRztYteChdU9uyCO-rUhnvjQYj63IPygzgK7C0tSxsk4NUVmurzWlwlEnnzdnv9oPH0fUynYTT-fgmHU5DRXHEw1hSpKVm6xhjSSKMNGckgYleE2N0pHiSKIKwURRSRZHkVDOsGN1OrLBWpB9cdH83VfnRGF-L3HplnJOFKRsvUIwZwxgxukUHHaqq0vvKZGJT2VxWrUBQ7NqJXTuxb7cVkk74ss60_9BieDWa_XXDzrW-Nt97V1bvIuKEM7G6GwsULW_HdDUTz-QH0zGBrw</recordid><startdate>20160620</startdate><enddate>20160620</enddate><creator>Dillon, Andrew D.</creator><creator>Ghidiu, Michael J.</creator><creator>Krick, Alex L.</creator><creator>Griggs, Justin</creator><creator>May, Steven J.</creator><creator>Gogotsi, Yury</creator><creator>Barsoum, Michel W.</creator><creator>Fafarman, Aaron T.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160620</creationdate><title>Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide</title><author>Dillon, Andrew D. ; Ghidiu, Michael J. ; Krick, Alex L. ; Griggs, Justin ; May, Steven J. ; Gogotsi, Yury ; Barsoum, Michel W. ; Fafarman, Aaron T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4267-8a41dad5b822a3621d753909db3eed6c799c312ec404c41a74d52c544d58c2dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>2D materials</topic><topic>Alignment</topic><topic>Conductivity</topic><topic>Constituents</topic><topic>MXenes</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Plasmonics</topic><topic>Resistivity</topic><topic>solution-processed</topic><topic>transparent conductors</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dillon, Andrew D.</creatorcontrib><creatorcontrib>Ghidiu, Michael J.</creatorcontrib><creatorcontrib>Krick, Alex L.</creatorcontrib><creatorcontrib>Griggs, Justin</creatorcontrib><creatorcontrib>May, Steven J.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Barsoum, Michel W.</creatorcontrib><creatorcontrib>Fafarman, Aaron T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dillon, Andrew D.</au><au>Ghidiu, Michael J.</au><au>Krick, Alex L.</au><au>Griggs, Justin</au><au>May, Steven J.</au><au>Gogotsi, Yury</au><au>Barsoum, Michel W.</au><au>Fafarman, Aaron T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2016-06-20</date><risdate>2016</risdate><volume>26</volume><issue>23</issue><spage>4162</spage><epage>4168</epage><pages>4162-4168</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>MXenes comprise a new class of solution‐dispersable, 2D nanomaterials formed from transition metal carbides and nitrides such as Ti3C2. Here, it is shown that 2D Ti3C2 can be assembled from aqueous solutions into optical quality, nanometer thin films that, at 6500 S cm−1, surpass the conductivity of other solution‐processed 2D materials, while simultaneously transmitting &gt;97% of visible light per‐nanometer thickness. It is shown that this high conductivity is due to a metal‐like free‐electron density as well as a high degree of coplanar alignment of individual nanosheets achieved through spincasting. Consequently, the spincast films exhibit conductivity over a macroscopic scale that is comparable to the intrinsic conductivity of the constituent 2D sheets. Additionally, optical characterization over the ultraviolet‐to‐near‐infrared range reveals the onset of free‐electron plasma oscillations above 1130 nm. Ti3C2 is therefore a potential building block for plasmonic applications at near‐infrared wavelengths and constitutes the first example of a new class of solution‐processed, carbide‐based 2D optoelectronic materials. An aqueous colloidal Ti3C2‐based MXene is assembled by spincasting into highly aligned, optical‐quality films with a conductivity of 6500 S cm−1. The electrical and optical properties of this material are measured revealing that it is plasmonic in the near‐infrared. Comparison of the in‐plane DC conductivity and the optical conductivity indicates that the macroscopic material is nearly as conductive as the constituent nanosheets.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201600357</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2016-06, Vol.26 (23), p.4162-4168
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1825522154
source Wiley-Blackwell Read & Publish Collection
subjects 2D materials
Alignment
Conductivity
Constituents
MXenes
Nanostructure
Optical properties
Plasmonics
Resistivity
solution-processed
transparent conductors
Two dimensional
title Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Conductive%20Optical%20Quality%20Solution-Processed%20Films%20of%202D%20Titanium%20Carbide&rft.jtitle=Advanced%20functional%20materials&rft.au=Dillon,%20Andrew%20D.&rft.date=2016-06-20&rft.volume=26&rft.issue=23&rft.spage=4162&rft.epage=4168&rft.pages=4162-4168&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201600357&rft_dat=%3Cproquest_cross%3E1825522154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4267-8a41dad5b822a3621d753909db3eed6c799c312ec404c41a74d52c544d58c2dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825522154&rft_id=info:pmid/&rfr_iscdi=true