Loading…

Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity

The comprehensive free vibration analysis of doubly-curved shallow shells which are made of an orthotropic material is presented. The size effect is taken into consideration using the gradient elasticity theory. Novozhilov’s linear shallow shell theory is used and it is assumed that the shell is sim...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part B, Engineering Engineering, 2013-02, Vol.45 (1), p.1448-1457
Main Authors: Ghavanloo, E., Fazelzadeh, S.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-c5685b7a4cd7452a0b651740f86a3d3f068091201dcbe61249eb0330e6309ee53
cites cdi_FETCH-LOGICAL-c441t-c5685b7a4cd7452a0b651740f86a3d3f068091201dcbe61249eb0330e6309ee53
container_end_page 1457
container_issue 1
container_start_page 1448
container_title Composites. Part B, Engineering
container_volume 45
creator Ghavanloo, E.
Fazelzadeh, S.A.
description The comprehensive free vibration analysis of doubly-curved shallow shells which are made of an orthotropic material is presented. The size effect is taken into consideration using the gradient elasticity theory. Novozhilov’s linear shallow shell theory is used and it is assumed that the shell is simply supported. The governing equations of the doubly-curved shallow shells with consideration of the length scales are developed. Analytical solutions to the equations are proposed to obtain the frequencies of the shells. Numerical results are presented for various shell curvatures including spherical, cylindrical and hyperbolic paraboloidal shells and compared with those available in the literature.
doi_str_mv 10.1016/j.compositesb.2012.09.054
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825541052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135983681200604X</els_id><sourcerecordid>1825541052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c5685b7a4cd7452a0b651740f86a3d3f068091201dcbe61249eb0330e6309ee53</originalsourceid><addsrcrecordid>eNqNkMFu1DAQhiMEEqXwDJgDEpeEcWI79hGtKFSqxAF6thxn0vXKGy8e76J9e1xthXrkNNbom3_GX9N84NBx4OrzrvNpf0gUCtLU9cD7DkwHUrxorrgeTctBmZf1PUjT6kHp180boh0ACDn0V818kxHZKUzZlZBW5lYXzxSIpYWlXLap5HQIns3pOMVz64_5hDOjrYsx_akVYyQ2OarNOl22yB6ymwOuhWF0VIIP5fy2ebW4SPjuqV439zdff22-t3c_vt1uvty1XgheWi-VltPohJ9HIXsHk5J8FLBo5YZ5WEBpMLz-cfYTKt4LgxMMA6AawCDK4br5dMk95PT7iFTsPpCvJ7oV05Es172UgoPsK2ouqM-JKONiDznsXT5bDvbRrN3ZZ2bto1kLxlazdfbj0xpH3sUlu9UH-hfQq1GrUULl3l-4xSXrHnJl7n_WIAnAec3RldhcCKxWTgGzJV_deZxDRl_snMJ_3PMXYMOfhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825541052</pqid></control><display><type>article</type><title>Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity</title><source>ScienceDirect Journals</source><creator>Ghavanloo, E. ; Fazelzadeh, S.A.</creator><creatorcontrib>Ghavanloo, E. ; Fazelzadeh, S.A.</creatorcontrib><description>The comprehensive free vibration analysis of doubly-curved shallow shells which are made of an orthotropic material is presented. The size effect is taken into consideration using the gradient elasticity theory. Novozhilov’s linear shallow shell theory is used and it is assumed that the shell is simply supported. The governing equations of the doubly-curved shallow shells with consideration of the length scales are developed. Analytical solutions to the equations are proposed to obtain the frequencies of the shells. Numerical results are presented for various shell curvatures including spherical, cylindrical and hyperbolic paraboloidal shells and compared with those available in the literature.</description><identifier>ISSN: 1359-8368</identifier><identifier>EISSN: 1879-1069</identifier><identifier>DOI: 10.1016/j.compositesb.2012.09.054</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; B. Vibration ; C. Analytical modeling ; Composites ; Curvature ; Elasticity ; elasticity (mechanics) ; equations ; Exact sciences and technology ; Forms of application and semi-finished materials ; Free vibration ; Laminates ; Mathematical analysis ; Mathematical models ; Orthotropic doubly-curved shell ; Physicochemistry of polymers ; Polymer industry, paints, wood ; Shallow shells ; Technology of polymers ; vibration</subject><ispartof>Composites. Part B, Engineering, 2013-02, Vol.45 (1), p.1448-1457</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c5685b7a4cd7452a0b651740f86a3d3f068091201dcbe61249eb0330e6309ee53</citedby><cites>FETCH-LOGICAL-c441t-c5685b7a4cd7452a0b651740f86a3d3f068091201dcbe61249eb0330e6309ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26786750$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghavanloo, E.</creatorcontrib><creatorcontrib>Fazelzadeh, S.A.</creatorcontrib><title>Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity</title><title>Composites. Part B, Engineering</title><description>The comprehensive free vibration analysis of doubly-curved shallow shells which are made of an orthotropic material is presented. The size effect is taken into consideration using the gradient elasticity theory. Novozhilov’s linear shallow shell theory is used and it is assumed that the shell is simply supported. The governing equations of the doubly-curved shallow shells with consideration of the length scales are developed. Analytical solutions to the equations are proposed to obtain the frequencies of the shells. Numerical results are presented for various shell curvatures including spherical, cylindrical and hyperbolic paraboloidal shells and compared with those available in the literature.</description><subject>Applied sciences</subject><subject>B. Vibration</subject><subject>C. Analytical modeling</subject><subject>Composites</subject><subject>Curvature</subject><subject>Elasticity</subject><subject>elasticity (mechanics)</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Free vibration</subject><subject>Laminates</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Orthotropic doubly-curved shell</subject><subject>Physicochemistry of polymers</subject><subject>Polymer industry, paints, wood</subject><subject>Shallow shells</subject><subject>Technology of polymers</subject><subject>vibration</subject><issn>1359-8368</issn><issn>1879-1069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkMFu1DAQhiMEEqXwDJgDEpeEcWI79hGtKFSqxAF6thxn0vXKGy8e76J9e1xthXrkNNbom3_GX9N84NBx4OrzrvNpf0gUCtLU9cD7DkwHUrxorrgeTctBmZf1PUjT6kHp180boh0ACDn0V818kxHZKUzZlZBW5lYXzxSIpYWlXLap5HQIns3pOMVz64_5hDOjrYsx_akVYyQ2OarNOl22yB6ymwOuhWF0VIIP5fy2ebW4SPjuqV439zdff22-t3c_vt1uvty1XgheWi-VltPohJ9HIXsHk5J8FLBo5YZ5WEBpMLz-cfYTKt4LgxMMA6AawCDK4br5dMk95PT7iFTsPpCvJ7oV05Es172UgoPsK2ouqM-JKONiDznsXT5bDvbRrN3ZZ2bto1kLxlazdfbj0xpH3sUlu9UH-hfQq1GrUULl3l-4xSXrHnJl7n_WIAnAec3RldhcCKxWTgGzJV_deZxDRl_snMJ_3PMXYMOfhw</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Ghavanloo, E.</creator><creator>Fazelzadeh, S.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity</title><author>Ghavanloo, E. ; Fazelzadeh, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c5685b7a4cd7452a0b651740f86a3d3f068091201dcbe61249eb0330e6309ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>B. Vibration</topic><topic>C. Analytical modeling</topic><topic>Composites</topic><topic>Curvature</topic><topic>Elasticity</topic><topic>elasticity (mechanics)</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Free vibration</topic><topic>Laminates</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Orthotropic doubly-curved shell</topic><topic>Physicochemistry of polymers</topic><topic>Polymer industry, paints, wood</topic><topic>Shallow shells</topic><topic>Technology of polymers</topic><topic>vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghavanloo, E.</creatorcontrib><creatorcontrib>Fazelzadeh, S.A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Composites. Part B, Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghavanloo, E.</au><au>Fazelzadeh, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity</atitle><jtitle>Composites. Part B, Engineering</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>45</volume><issue>1</issue><spage>1448</spage><epage>1457</epage><pages>1448-1457</pages><issn>1359-8368</issn><eissn>1879-1069</eissn><abstract>The comprehensive free vibration analysis of doubly-curved shallow shells which are made of an orthotropic material is presented. The size effect is taken into consideration using the gradient elasticity theory. Novozhilov’s linear shallow shell theory is used and it is assumed that the shell is simply supported. The governing equations of the doubly-curved shallow shells with consideration of the length scales are developed. Analytical solutions to the equations are proposed to obtain the frequencies of the shells. Numerical results are presented for various shell curvatures including spherical, cylindrical and hyperbolic paraboloidal shells and compared with those available in the literature.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesb.2012.09.054</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-8368
ispartof Composites. Part B, Engineering, 2013-02, Vol.45 (1), p.1448-1457
issn 1359-8368
1879-1069
language eng
recordid cdi_proquest_miscellaneous_1825541052
source ScienceDirect Journals
subjects Applied sciences
B. Vibration
C. Analytical modeling
Composites
Curvature
Elasticity
elasticity (mechanics)
equations
Exact sciences and technology
Forms of application and semi-finished materials
Free vibration
Laminates
Mathematical analysis
Mathematical models
Orthotropic doubly-curved shell
Physicochemistry of polymers
Polymer industry, paints, wood
Shallow shells
Technology of polymers
vibration
title Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20vibration%20analysis%20of%20orthotropic%20doubly-curved%20shallow%20shells%20based%20on%20the%20gradient%20elasticity&rft.jtitle=Composites.%20Part%20B,%20Engineering&rft.au=Ghavanloo,%20E.&rft.date=2013-02-01&rft.volume=45&rft.issue=1&rft.spage=1448&rft.epage=1457&rft.pages=1448-1457&rft.issn=1359-8368&rft.eissn=1879-1069&rft_id=info:doi/10.1016/j.compositesb.2012.09.054&rft_dat=%3Cproquest_cross%3E1825541052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-c5685b7a4cd7452a0b651740f86a3d3f068091201dcbe61249eb0330e6309ee53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825541052&rft_id=info:pmid/&rfr_iscdi=true