Loading…

Structure Control of Calcium Silicate Hydrate Gels for Dye Removal Applications

The structure of calcium silicate hydrate (C‐S‐H) gels was modified by hydrothermal reaction with aqueous acetic acid solvent, and then the C‐S‐H gels were used for dye removal from aqueous solution. With increasing acetic acid concentration, the Ca:Si molar ratio decreased and the length of the sil...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2016-07, Vol.99 (7), p.2493-2496
Main Authors: Maeda, Hirotaka, Abe, Toshiyuki, Ishida, Emile Hideki, Kasuga, Toshihiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structure of calcium silicate hydrate (C‐S‐H) gels was modified by hydrothermal reaction with aqueous acetic acid solvent, and then the C‐S‐H gels were used for dye removal from aqueous solution. With increasing acetic acid concentration, the Ca:Si molar ratio decreased and the length of the silicate anion chain structure of the C‐S‐H gels increased. The silicate anion chain length affects the number of available silanol groups on the surface of the C‐S‐H gel: the longer the silicate anion chain length, the greater the number of negative charges and the higher the surface potential. C‐S‐H gels with a long silicate anion structure exhibited higher adsorption capacity for methylene blue than gels with a short silicate anion structure. The enhanced adsorption capacity of the C‐S‐H gels is related to the higher number of silanol groups in the bridging silica tetrahedra of the intermediate anion chain structure compared with those in the end units of silica tetrahedra.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.14245