Loading…

Handcrafted features with convolutional neural networks for detection of tumor cells in histology images

Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&E stained images. However,...

Full description

Saved in:
Bibliographic Details
Main Authors: Kashif, Muhammad Nasim, Ahmed Raza, Shan E., Sirinukunwattana, Korsuk, Arif, Muhammmad, Rajpoot, Nasir
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3
cites
container_end_page 1032
container_issue
container_start_page 1029
container_title
container_volume
creator Kashif, Muhammad Nasim
Ahmed Raza, Shan E.
Sirinukunwattana, Korsuk
Arif, Muhammmad
Rajpoot, Nasir
description Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture.
doi_str_mv 10.1109/ISBI.2016.7493441
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825542595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7493441</ieee_id><sourcerecordid>1825542595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3</originalsourceid><addsrcrecordid>eNotUMFOwzAUC0hITGMfgLjkyGUjyUva5ggTsEmTOADnKk1ftkLXjCRl2t_TsfliybYsy4TccjbjnOmH5fvTciYYz2a51CAlvyATnRdc5loLkDq7JCOupZoWUolrMonxiw3IpQQmR2SzMF1tg3EJa-rQpD5gpPsmbaj13a9v-9T4zrS0wz78U9r78B2p84HWmNAefeodTf12kCy2baRNRzdNTL716wNttmaN8YZcOdNGnJx5TD5fnj_mi-nq7XU5f1xNrVBZmkKWW2Nybupag7BCVqgq5cBlIEEjVMXgS4VMFExklQMlwFQFWF4xUFjDmNyfenfB__QYU7lt4nGV6dD3seSFUEoKpdUQvTtFG0Qsd2EYGg7l-Ub4A-gzaA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1825542595</pqid></control><display><type>conference_proceeding</type><title>Handcrafted features with convolutional neural networks for detection of tumor cells in histology images</title><source>IEEE Xplore All Conference Series</source><creator>Kashif, Muhammad Nasim ; Ahmed Raza, Shan E. ; Sirinukunwattana, Korsuk ; Arif, Muhammmad ; Rajpoot, Nasir</creator><creatorcontrib>Kashif, Muhammad Nasim ; Ahmed Raza, Shan E. ; Sirinukunwattana, Korsuk ; Arif, Muhammmad ; Rajpoot, Nasir</creatorcontrib><description>Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&amp;E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781479923496</identifier><identifier>EISBN: 1479923494</identifier><identifier>DOI: 10.1109/ISBI.2016.7493441</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional Neural Network ; Digital Pathology ; Feature extraction ; Histology ; Image color analysis ; Image detection ; Neural networks ; Nuclei ; Raw ; Scattering ; Scattering Transform ; Surface layer ; Texture ; Transforms ; Tumor Nuclei Detection ; Tumors</subject><ispartof>2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016, p.1029-1032</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7493441$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7493441$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kashif, Muhammad Nasim</creatorcontrib><creatorcontrib>Ahmed Raza, Shan E.</creatorcontrib><creatorcontrib>Sirinukunwattana, Korsuk</creatorcontrib><creatorcontrib>Arif, Muhammmad</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><title>Handcrafted features with convolutional neural networks for detection of tumor cells in histology images</title><title>2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&amp;E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture.</description><subject>Convolutional Neural Network</subject><subject>Digital Pathology</subject><subject>Feature extraction</subject><subject>Histology</subject><subject>Image color analysis</subject><subject>Image detection</subject><subject>Neural networks</subject><subject>Nuclei</subject><subject>Raw</subject><subject>Scattering</subject><subject>Scattering Transform</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Transforms</subject><subject>Tumor Nuclei Detection</subject><subject>Tumors</subject><issn>1945-8452</issn><isbn>9781479923496</isbn><isbn>1479923494</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMFOwzAUC0hITGMfgLjkyGUjyUva5ggTsEmTOADnKk1ftkLXjCRl2t_TsfliybYsy4TccjbjnOmH5fvTciYYz2a51CAlvyATnRdc5loLkDq7JCOupZoWUolrMonxiw3IpQQmR2SzMF1tg3EJa-rQpD5gpPsmbaj13a9v-9T4zrS0wz78U9r78B2p84HWmNAefeodTf12kCy2baRNRzdNTL716wNttmaN8YZcOdNGnJx5TD5fnj_mi-nq7XU5f1xNrVBZmkKWW2Nybupag7BCVqgq5cBlIEEjVMXgS4VMFExklQMlwFQFWF4xUFjDmNyfenfB__QYU7lt4nGV6dD3seSFUEoKpdUQvTtFG0Qsd2EYGg7l-Ub4A-gzaA4</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Kashif, Muhammad Nasim</creator><creator>Ahmed Raza, Shan E.</creator><creator>Sirinukunwattana, Korsuk</creator><creator>Arif, Muhammmad</creator><creator>Rajpoot, Nasir</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>Handcrafted features with convolutional neural networks for detection of tumor cells in histology images</title><author>Kashif, Muhammad Nasim ; Ahmed Raza, Shan E. ; Sirinukunwattana, Korsuk ; Arif, Muhammmad ; Rajpoot, Nasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convolutional Neural Network</topic><topic>Digital Pathology</topic><topic>Feature extraction</topic><topic>Histology</topic><topic>Image color analysis</topic><topic>Image detection</topic><topic>Neural networks</topic><topic>Nuclei</topic><topic>Raw</topic><topic>Scattering</topic><topic>Scattering Transform</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Transforms</topic><topic>Tumor Nuclei Detection</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Kashif, Muhammad Nasim</creatorcontrib><creatorcontrib>Ahmed Raza, Shan E.</creatorcontrib><creatorcontrib>Sirinukunwattana, Korsuk</creatorcontrib><creatorcontrib>Arif, Muhammmad</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kashif, Muhammad Nasim</au><au>Ahmed Raza, Shan E.</au><au>Sirinukunwattana, Korsuk</au><au>Arif, Muhammmad</au><au>Rajpoot, Nasir</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Handcrafted features with convolutional neural networks for detection of tumor cells in histology images</atitle><btitle>2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2016-04-01</date><risdate>2016</risdate><spage>1029</spage><epage>1032</epage><pages>1029-1032</pages><eissn>1945-8452</eissn><eisbn>9781479923496</eisbn><eisbn>1479923494</eisbn><abstract>Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&amp;E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2016.7493441</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016, p.1029-1032
issn 1945-8452
language eng
recordid cdi_proquest_miscellaneous_1825542595
source IEEE Xplore All Conference Series
subjects Convolutional Neural Network
Digital Pathology
Feature extraction
Histology
Image color analysis
Image detection
Neural networks
Nuclei
Raw
Scattering
Scattering Transform
Surface layer
Texture
Transforms
Tumor Nuclei Detection
Tumors
title Handcrafted features with convolutional neural networks for detection of tumor cells in histology images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Handcrafted%20features%20with%20convolutional%20neural%20networks%20for%20detection%20of%20tumor%20cells%20in%20histology%20images&rft.btitle=2016%20IEEE%2013th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Kashif,%20Muhammad%20Nasim&rft.date=2016-04-01&rft.spage=1029&rft.epage=1032&rft.pages=1029-1032&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI.2016.7493441&rft.eisbn=9781479923496&rft.eisbn_list=1479923494&rft_dat=%3Cproquest_CHZPO%3E1825542595%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825542595&rft_id=info:pmid/&rft_ieee_id=7493441&rfr_iscdi=true