Loading…
Handcrafted features with convolutional neural networks for detection of tumor cells in histology images
Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&E stained images. However,...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3 |
---|---|
cites | |
container_end_page | 1032 |
container_issue | |
container_start_page | 1029 |
container_title | |
container_volume | |
creator | Kashif, Muhammad Nasim Ahmed Raza, Shan E. Sirinukunwattana, Korsuk Arif, Muhammmad Rajpoot, Nasir |
description | Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture. |
doi_str_mv | 10.1109/ISBI.2016.7493441 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825542595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7493441</ieee_id><sourcerecordid>1825542595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3</originalsourceid><addsrcrecordid>eNotUMFOwzAUC0hITGMfgLjkyGUjyUva5ggTsEmTOADnKk1ftkLXjCRl2t_TsfliybYsy4TccjbjnOmH5fvTciYYz2a51CAlvyATnRdc5loLkDq7JCOupZoWUolrMonxiw3IpQQmR2SzMF1tg3EJa-rQpD5gpPsmbaj13a9v-9T4zrS0wz78U9r78B2p84HWmNAefeodTf12kCy2baRNRzdNTL716wNttmaN8YZcOdNGnJx5TD5fnj_mi-nq7XU5f1xNrVBZmkKWW2Nybupag7BCVqgq5cBlIEEjVMXgS4VMFExklQMlwFQFWF4xUFjDmNyfenfB__QYU7lt4nGV6dD3seSFUEoKpdUQvTtFG0Qsd2EYGg7l-Ub4A-gzaA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1825542595</pqid></control><display><type>conference_proceeding</type><title>Handcrafted features with convolutional neural networks for detection of tumor cells in histology images</title><source>IEEE Xplore All Conference Series</source><creator>Kashif, Muhammad Nasim ; Ahmed Raza, Shan E. ; Sirinukunwattana, Korsuk ; Arif, Muhammmad ; Rajpoot, Nasir</creator><creatorcontrib>Kashif, Muhammad Nasim ; Ahmed Raza, Shan E. ; Sirinukunwattana, Korsuk ; Arif, Muhammmad ; Rajpoot, Nasir</creatorcontrib><description>Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781479923496</identifier><identifier>EISBN: 1479923494</identifier><identifier>DOI: 10.1109/ISBI.2016.7493441</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolutional Neural Network ; Digital Pathology ; Feature extraction ; Histology ; Image color analysis ; Image detection ; Neural networks ; Nuclei ; Raw ; Scattering ; Scattering Transform ; Surface layer ; Texture ; Transforms ; Tumor Nuclei Detection ; Tumors</subject><ispartof>2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016, p.1029-1032</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7493441$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7493441$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kashif, Muhammad Nasim</creatorcontrib><creatorcontrib>Ahmed Raza, Shan E.</creatorcontrib><creatorcontrib>Sirinukunwattana, Korsuk</creatorcontrib><creatorcontrib>Arif, Muhammmad</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><title>Handcrafted features with convolutional neural networks for detection of tumor cells in histology images</title><title>2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture.</description><subject>Convolutional Neural Network</subject><subject>Digital Pathology</subject><subject>Feature extraction</subject><subject>Histology</subject><subject>Image color analysis</subject><subject>Image detection</subject><subject>Neural networks</subject><subject>Nuclei</subject><subject>Raw</subject><subject>Scattering</subject><subject>Scattering Transform</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Transforms</subject><subject>Tumor Nuclei Detection</subject><subject>Tumors</subject><issn>1945-8452</issn><isbn>9781479923496</isbn><isbn>1479923494</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMFOwzAUC0hITGMfgLjkyGUjyUva5ggTsEmTOADnKk1ftkLXjCRl2t_TsfliybYsy4TccjbjnOmH5fvTciYYz2a51CAlvyATnRdc5loLkDq7JCOupZoWUolrMonxiw3IpQQmR2SzMF1tg3EJa-rQpD5gpPsmbaj13a9v-9T4zrS0wz78U9r78B2p84HWmNAefeodTf12kCy2baRNRzdNTL716wNttmaN8YZcOdNGnJx5TD5fnj_mi-nq7XU5f1xNrVBZmkKWW2Nybupag7BCVqgq5cBlIEEjVMXgS4VMFExklQMlwFQFWF4xUFjDmNyfenfB__QYU7lt4nGV6dD3seSFUEoKpdUQvTtFG0Qsd2EYGg7l-Ub4A-gzaA4</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Kashif, Muhammad Nasim</creator><creator>Ahmed Raza, Shan E.</creator><creator>Sirinukunwattana, Korsuk</creator><creator>Arif, Muhammmad</creator><creator>Rajpoot, Nasir</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>Handcrafted features with convolutional neural networks for detection of tumor cells in histology images</title><author>Kashif, Muhammad Nasim ; Ahmed Raza, Shan E. ; Sirinukunwattana, Korsuk ; Arif, Muhammmad ; Rajpoot, Nasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convolutional Neural Network</topic><topic>Digital Pathology</topic><topic>Feature extraction</topic><topic>Histology</topic><topic>Image color analysis</topic><topic>Image detection</topic><topic>Neural networks</topic><topic>Nuclei</topic><topic>Raw</topic><topic>Scattering</topic><topic>Scattering Transform</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Transforms</topic><topic>Tumor Nuclei Detection</topic><topic>Tumors</topic><toplevel>online_resources</toplevel><creatorcontrib>Kashif, Muhammad Nasim</creatorcontrib><creatorcontrib>Ahmed Raza, Shan E.</creatorcontrib><creatorcontrib>Sirinukunwattana, Korsuk</creatorcontrib><creatorcontrib>Arif, Muhammmad</creatorcontrib><creatorcontrib>Rajpoot, Nasir</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kashif, Muhammad Nasim</au><au>Ahmed Raza, Shan E.</au><au>Sirinukunwattana, Korsuk</au><au>Arif, Muhammmad</au><au>Rajpoot, Nasir</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Handcrafted features with convolutional neural networks for detection of tumor cells in histology images</atitle><btitle>2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2016-04-01</date><risdate>2016</risdate><spage>1029</spage><epage>1032</epage><pages>1029-1032</pages><eissn>1945-8452</eissn><eisbn>9781479923496</eisbn><eisbn>1479923494</eisbn><abstract>Detection of tumor nuclei in cancer histology images requires sophisticated techniques due to the irregular shape, size and chromatin texture of the tumor nuclei. Some very recently proposed methods employ deep convolutional neural networks (CNNs) to detect cells in H&E stained images. However, all such methods use some form of raw pixel intensities as input and rely on the CNN to learn the deep features. In this work, we extend a recently proposed spatially constrained CNN (SC-CNN) by proposing features that capture texture characteristics and show that although CNN produces good results on automatically learned features, it can perform better if the input consists of a combination of handcrafted features and the raw data. The handcrafted features are computed through the scattering transform which gives non-linear invariant texture features. The combination of handcrafted features with raw data produces sharp proximity maps and better detection results than the results of raw intensities with a similar kind of CNN architecture.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2016.7493441</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-8452 |
ispartof | 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016, p.1029-1032 |
issn | 1945-8452 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825542595 |
source | IEEE Xplore All Conference Series |
subjects | Convolutional Neural Network Digital Pathology Feature extraction Histology Image color analysis Image detection Neural networks Nuclei Raw Scattering Scattering Transform Surface layer Texture Transforms Tumor Nuclei Detection Tumors |
title | Handcrafted features with convolutional neural networks for detection of tumor cells in histology images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Handcrafted%20features%20with%20convolutional%20neural%20networks%20for%20detection%20of%20tumor%20cells%20in%20histology%20images&rft.btitle=2016%20IEEE%2013th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Kashif,%20Muhammad%20Nasim&rft.date=2016-04-01&rft.spage=1029&rft.epage=1032&rft.pages=1029-1032&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI.2016.7493441&rft.eisbn=9781479923496&rft.eisbn_list=1479923494&rft_dat=%3Cproquest_CHZPO%3E1825542595%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-367caa71add932c24be5b5f3f63439e3b87ca45e028026bf3523ab83c1b035ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825542595&rft_id=info:pmid/&rft_ieee_id=7493441&rfr_iscdi=true |