Loading…

The critical role of nanotube shape in cement composites

The growing availability of nanotubes and the increased knowledge about their loading in polymers have prompted the incorporation of nanotubes in cementitious matrices. The effects of loading straight tungsten di-sulfide nanotubes (WS2NT) or waved carbon nanotubes (CNT) in cementitious matrices was...

Full description

Saved in:
Bibliographic Details
Published in:Cement & concrete composites 2016-08, Vol.71, p.166-174
Main Authors: Nadiv, Roey, Shtein, Michael, Refaeli, Maor, Peled, Alva, Regev, Oren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The growing availability of nanotubes and the increased knowledge about their loading in polymers have prompted the incorporation of nanotubes in cementitious matrices. The effects of loading straight tungsten di-sulfide nanotubes (WS2NT) or waved carbon nanotubes (CNT) in cementitious matrices was explored. Their inclusion in these composites at exceptionally low concentrations (0.063 vol% and 0.15 vol% for WS2NT and CNT, respectively) enhanced the composite’s mechanical properties, including compressive and flexural strengths (25–38%). Thermal analysis and electron microscopy indicated that nanotube incorporation in cementitious matrices also accelerated hydration reaction kinetics. It was shown that straight WS2NTs bridged pores and cracks more effectively than the waved CNTs, which resist crack propagation via an anchoring mechanism. A comparison to representative cement nanocomposite systems shows that nanotubes (aspect ratio≫1), offer better reinforcement efficiencies than particulate nanomaterials, yielding high mechanical properties enhancement at low concentration.
ISSN:0958-9465
1873-393X
DOI:10.1016/j.cemconcomp.2016.05.012