Loading…

Finitary and cofinitary gammoids

A gammoid is a matroid defined using linkability of vertex sets in a (possibly infinite) digraph. Related types of matroids are strict gammoids and transversal matroids, three aspects of which will be considered as follows. First, we investigate the interaction between matroid properties of strict g...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2016-08, Vol.209, p.2-10
Main Authors: Afzali Borujeni, Seyed Hadi, Law, Hiu-Fai, Müller, Malte
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c330t-99a3820fa919afce2bfd41b059164579f0c87919004b1eb3d4d6871dc10e0d83
cites cdi_FETCH-LOGICAL-c330t-99a3820fa919afce2bfd41b059164579f0c87919004b1eb3d4d6871dc10e0d83
container_end_page 10
container_issue
container_start_page 2
container_title Discrete Applied Mathematics
container_volume 209
creator Afzali Borujeni, Seyed Hadi
Law, Hiu-Fai
Müller, Malte
description A gammoid is a matroid defined using linkability of vertex sets in a (possibly infinite) digraph. Related types of matroids are strict gammoids and transversal matroids, three aspects of which will be considered as follows. First, we investigate the interaction between matroid properties of strict gammoids and transversal matroids and graphic properties of the defining graphs. In particular, we characterize cofinitary strict gammoids and cofinitary transversal matroids among, respectively, strict gammoids and transversal matroids in terms of the defining graphs. The set of finite circuits of a matroid defines the finitarization matroid on the same ground set. A matroid is nearly finitary if every base can be extended to a base of the finitarization matroid by adding finitely many elements. Aigner-Horev et al. (2011)  [6] raised the question whether the number of such additions is bounded for a fixed nearly finitary matroid. We answer this question positively in the classes of strict gammoids and transversal matroids. Piff and Welsh (1970) proved the classical result that a finite strict gammoid/transversal matroid is representable over any large enough field. In this direction, we prove that finitary strict gammoids and transversal matroids are representable over some field, and hence the cofinitary counterparts are thin sums representable, a new notion of representability introduced by Bruhn and Diestel (2011).
doi_str_mv 10.1016/j.dam.2015.07.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825543882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X15003832</els_id><sourcerecordid>1825543882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-99a3820fa919afce2bfd41b059164579f0c87919004b1eb3d4d6871dc10e0d83</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9g6siTc2UnsiAlVFJAqsXRgsxz7jFw1SbFTJP49rgor0-np3jvd-xi7RSgRsLnfls70JQesS5AlCDhjM1SSF42UeM5m2dMUHNX7JbtKaQsAmNWMLVZhCJOJ3wszuIUd_Z_8MH0_Bpeu2YU3u0Q3v3PONqunzfKlWL89vy4f14UVAqaibY1QHLxpsTXeEu-8q7CDusWmqmXrwSqZdwBVh9QJV7lGSXQWgcApMWd3p7P7OH4eKE26D8nSbmcGGg9Jo-J1XQmleLbiyWrjmFIkr_cx9PlnjaCPMPRWZxj6CEOD1BlGzjycMpQrfAWKOtlAgyUXItlJuzH8k_4BunVlfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825543882</pqid></control><display><type>article</type><title>Finitary and cofinitary gammoids</title><source>ScienceDirect Freedom Collection</source><creator>Afzali Borujeni, Seyed Hadi ; Law, Hiu-Fai ; Müller, Malte</creator><creatorcontrib>Afzali Borujeni, Seyed Hadi ; Law, Hiu-Fai ; Müller, Malte</creatorcontrib><description>A gammoid is a matroid defined using linkability of vertex sets in a (possibly infinite) digraph. Related types of matroids are strict gammoids and transversal matroids, three aspects of which will be considered as follows. First, we investigate the interaction between matroid properties of strict gammoids and transversal matroids and graphic properties of the defining graphs. In particular, we characterize cofinitary strict gammoids and cofinitary transversal matroids among, respectively, strict gammoids and transversal matroids in terms of the defining graphs. The set of finite circuits of a matroid defines the finitarization matroid on the same ground set. A matroid is nearly finitary if every base can be extended to a base of the finitarization matroid by adding finitely many elements. Aigner-Horev et al. (2011)  [6] raised the question whether the number of such additions is bounded for a fixed nearly finitary matroid. We answer this question positively in the classes of strict gammoids and transversal matroids. Piff and Welsh (1970) proved the classical result that a finite strict gammoid/transversal matroid is representable over any large enough field. In this direction, we prove that finitary strict gammoids and transversal matroids are representable over some field, and hence the cofinitary counterparts are thin sums representable, a new notion of representability introduced by Bruhn and Diestel (2011).</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2015.07.030</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Circuits ; Finitary ; Gammoid ; Graph theory ; Graphs ; Grounds ; Infinite matroid ; Mathematical analysis ; Sums ; Transversal matroid ; Vertex sets</subject><ispartof>Discrete Applied Mathematics, 2016-08, Vol.209, p.2-10</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-99a3820fa919afce2bfd41b059164579f0c87919004b1eb3d4d6871dc10e0d83</citedby><cites>FETCH-LOGICAL-c330t-99a3820fa919afce2bfd41b059164579f0c87919004b1eb3d4d6871dc10e0d83</cites><orcidid>0000-0003-2460-2447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids></links><search><creatorcontrib>Afzali Borujeni, Seyed Hadi</creatorcontrib><creatorcontrib>Law, Hiu-Fai</creatorcontrib><creatorcontrib>Müller, Malte</creatorcontrib><title>Finitary and cofinitary gammoids</title><title>Discrete Applied Mathematics</title><description>A gammoid is a matroid defined using linkability of vertex sets in a (possibly infinite) digraph. Related types of matroids are strict gammoids and transversal matroids, three aspects of which will be considered as follows. First, we investigate the interaction between matroid properties of strict gammoids and transversal matroids and graphic properties of the defining graphs. In particular, we characterize cofinitary strict gammoids and cofinitary transversal matroids among, respectively, strict gammoids and transversal matroids in terms of the defining graphs. The set of finite circuits of a matroid defines the finitarization matroid on the same ground set. A matroid is nearly finitary if every base can be extended to a base of the finitarization matroid by adding finitely many elements. Aigner-Horev et al. (2011)  [6] raised the question whether the number of such additions is bounded for a fixed nearly finitary matroid. We answer this question positively in the classes of strict gammoids and transversal matroids. Piff and Welsh (1970) proved the classical result that a finite strict gammoid/transversal matroid is representable over any large enough field. In this direction, we prove that finitary strict gammoids and transversal matroids are representable over some field, and hence the cofinitary counterparts are thin sums representable, a new notion of representability introduced by Bruhn and Diestel (2011).</description><subject>Circuits</subject><subject>Finitary</subject><subject>Gammoid</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Grounds</subject><subject>Infinite matroid</subject><subject>Mathematical analysis</subject><subject>Sums</subject><subject>Transversal matroid</subject><subject>Vertex sets</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9g6siTc2UnsiAlVFJAqsXRgsxz7jFw1SbFTJP49rgor0-np3jvd-xi7RSgRsLnfls70JQesS5AlCDhjM1SSF42UeM5m2dMUHNX7JbtKaQsAmNWMLVZhCJOJ3wszuIUd_Z_8MH0_Bpeu2YU3u0Q3v3PONqunzfKlWL89vy4f14UVAqaibY1QHLxpsTXeEu-8q7CDusWmqmXrwSqZdwBVh9QJV7lGSXQWgcApMWd3p7P7OH4eKE26D8nSbmcGGg9Jo-J1XQmleLbiyWrjmFIkr_cx9PlnjaCPMPRWZxj6CEOD1BlGzjycMpQrfAWKOtlAgyUXItlJuzH8k_4BunVlfQ</recordid><startdate>20160820</startdate><enddate>20160820</enddate><creator>Afzali Borujeni, Seyed Hadi</creator><creator>Law, Hiu-Fai</creator><creator>Müller, Malte</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2460-2447</orcidid></search><sort><creationdate>20160820</creationdate><title>Finitary and cofinitary gammoids</title><author>Afzali Borujeni, Seyed Hadi ; Law, Hiu-Fai ; Müller, Malte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-99a3820fa919afce2bfd41b059164579f0c87919004b1eb3d4d6871dc10e0d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Circuits</topic><topic>Finitary</topic><topic>Gammoid</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Grounds</topic><topic>Infinite matroid</topic><topic>Mathematical analysis</topic><topic>Sums</topic><topic>Transversal matroid</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afzali Borujeni, Seyed Hadi</creatorcontrib><creatorcontrib>Law, Hiu-Fai</creatorcontrib><creatorcontrib>Müller, Malte</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afzali Borujeni, Seyed Hadi</au><au>Law, Hiu-Fai</au><au>Müller, Malte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finitary and cofinitary gammoids</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2016-08-20</date><risdate>2016</risdate><volume>209</volume><spage>2</spage><epage>10</epage><pages>2-10</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A gammoid is a matroid defined using linkability of vertex sets in a (possibly infinite) digraph. Related types of matroids are strict gammoids and transversal matroids, three aspects of which will be considered as follows. First, we investigate the interaction between matroid properties of strict gammoids and transversal matroids and graphic properties of the defining graphs. In particular, we characterize cofinitary strict gammoids and cofinitary transversal matroids among, respectively, strict gammoids and transversal matroids in terms of the defining graphs. The set of finite circuits of a matroid defines the finitarization matroid on the same ground set. A matroid is nearly finitary if every base can be extended to a base of the finitarization matroid by adding finitely many elements. Aigner-Horev et al. (2011)  [6] raised the question whether the number of such additions is bounded for a fixed nearly finitary matroid. We answer this question positively in the classes of strict gammoids and transversal matroids. Piff and Welsh (1970) proved the classical result that a finite strict gammoid/transversal matroid is representable over any large enough field. In this direction, we prove that finitary strict gammoids and transversal matroids are representable over some field, and hence the cofinitary counterparts are thin sums representable, a new notion of representability introduced by Bruhn and Diestel (2011).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2015.07.030</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2460-2447</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2016-08, Vol.209, p.2-10
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_1825543882
source ScienceDirect Freedom Collection
subjects Circuits
Finitary
Gammoid
Graph theory
Graphs
Grounds
Infinite matroid
Mathematical analysis
Sums
Transversal matroid
Vertex sets
title Finitary and cofinitary gammoids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finitary%20and%20cofinitary%20gammoids&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Afzali%20Borujeni,%20Seyed%20Hadi&rft.date=2016-08-20&rft.volume=209&rft.spage=2&rft.epage=10&rft.pages=2-10&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2015.07.030&rft_dat=%3Cproquest_cross%3E1825543882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-99a3820fa919afce2bfd41b059164579f0c87919004b1eb3d4d6871dc10e0d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825543882&rft_id=info:pmid/&rfr_iscdi=true