Loading…
Decoupled Shading for Real-time Heterogeneous Volume Illumination
Existing real‐time volume rendering techniques which support global illumination are limited in modeling distinct realistic appearances for classified volume data, which is a desired capability in many fields of study for illustration and education. Directly extending the emission‐absorption volume...
Saved in:
Published in: | Computer graphics forum 2016-06, Vol.35 (3), p.401-410 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Existing real‐time volume rendering techniques which support global illumination are limited in modeling distinct realistic appearances for classified volume data, which is a desired capability in many fields of study for illustration and education. Directly extending the emission‐absorption volume integral with heterogeneous material shading becomes unaffordable for real‐time applications because the high‐frequency view‐dependent global lighting needs to be evaluated per sample along the volume integral. In this paper, we present a decoupled shading algorithm for multi‐material volume rendering that separates global incident lighting evaluation from per‐sample material shading under multiple light sources. We show how the incident lighting calculation can be optimized through a sparse volume integration method. The quality, performance and usefulness of our new multi‐material volume rendering method is demonstrated through several examples. |
---|---|
ISSN: | 0167-7055 1467-8659 |
DOI: | 10.1111/cgf.12916 |