Loading…
An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation
This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2016-09, Vol.205, p.116-129 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133 |
container_end_page | 129 |
container_issue | |
container_start_page | 116 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 205 |
creator | Kuo, R.J. Mei, C.H. Zulvia, F.E. Tsai, C.Y. |
description | This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence approach. In order to improve the efficiency, a principle component analysis is employed. Furthermore, three metaheuristic-based clustering algorithms are proposed. This paper uses a real-coded genetic algorithm, a particle swarm optimization and an artificial bee colony optimization to combine with clustering ensembles algorithm. The experimental results indicate that the proposed metaheuristic-based clustering ensembles algorithms have better performance than metaheuristic-based clustering without clustering ensembles method. Furthermore, the proposed algorithms are applied to solve a customer segmentation problem. The real problem is come from a mobile application. Among all of the proposed algorithms, the artificial bee colony optimization-based clustering ensembles algorithm outperforms other algorithms. Therefore, the marketing strategy for the real application is made based on the best result. |
doi_str_mv | 10.1016/j.neucom.2016.04.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825546151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231216302612</els_id><sourcerecordid>1825546151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AxdZumlt0qZNN8Iw-AUDzkLX4TV5ncnQNjVJBf-9Hce1q8eFcy-8Q8gty1KWsfL-kA44adenfE5pVqQZq87IgsmKJ5LL8pwsspqLhOeMX5KrEA7ZTDBeL4hdDRTGsbMaonUDdS0F2mOEPU7ehmg1hW7nvI37PmkgoKG6m0JEb4cdxSFg33R4bOydodHR1XZL9Qy4Hj0NuOtxiL_T1-SihS7gzd9dko-nx_f1S7J5e35drzaJzmseE5BGQsWxKXgjKg2thpKBMYXUjWFFmTNheCvbphYIAsuWNVCLHExR8gpYni_J3Wl39O5zwhBVb4PGroMB3RQUk1yIomSCzWhxQrV3IXhs1ehtD_5bsUwdzaqDOplVR7MqK9Tsba49nGo4v_Fl0augLQ4ajfWoozLO_j_wA8W2hrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825546151</pqid></control><display><type>article</type><title>An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation</title><source>ScienceDirect Freedom Collection</source><creator>Kuo, R.J. ; Mei, C.H. ; Zulvia, F.E. ; Tsai, C.Y.</creator><creatorcontrib>Kuo, R.J. ; Mei, C.H. ; Zulvia, F.E. ; Tsai, C.Y.</creatorcontrib><description>This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence approach. In order to improve the efficiency, a principle component analysis is employed. Furthermore, three metaheuristic-based clustering algorithms are proposed. This paper uses a real-coded genetic algorithm, a particle swarm optimization and an artificial bee colony optimization to combine with clustering ensembles algorithm. The experimental results indicate that the proposed metaheuristic-based clustering ensembles algorithms have better performance than metaheuristic-based clustering without clustering ensembles method. Furthermore, the proposed algorithms are applied to solve a customer segmentation problem. The real problem is come from a mobile application. Among all of the proposed algorithms, the artificial bee colony optimization-based clustering ensembles algorithm outperforms other algorithms. Therefore, the marketing strategy for the real application is made based on the best result.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2016.04.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Applications programs ; Artificial bee colony ; Cluster analysis ; Clustering ; Clustering ensembles ; Customer segmentation ; Genetic algorithm ; Mobile communication systems ; Optimization ; Particle swarm optimization ; Segmentation ; Strategy ; Swarm intelligence</subject><ispartof>Neurocomputing (Amsterdam), 2016-09, Vol.205, p.116-129</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133</citedby><cites>FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuo, R.J.</creatorcontrib><creatorcontrib>Mei, C.H.</creatorcontrib><creatorcontrib>Zulvia, F.E.</creatorcontrib><creatorcontrib>Tsai, C.Y.</creatorcontrib><title>An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation</title><title>Neurocomputing (Amsterdam)</title><description>This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence approach. In order to improve the efficiency, a principle component analysis is employed. Furthermore, three metaheuristic-based clustering algorithms are proposed. This paper uses a real-coded genetic algorithm, a particle swarm optimization and an artificial bee colony optimization to combine with clustering ensembles algorithm. The experimental results indicate that the proposed metaheuristic-based clustering ensembles algorithms have better performance than metaheuristic-based clustering without clustering ensembles method. Furthermore, the proposed algorithms are applied to solve a customer segmentation problem. The real problem is come from a mobile application. Among all of the proposed algorithms, the artificial bee colony optimization-based clustering ensembles algorithm outperforms other algorithms. Therefore, the marketing strategy for the real application is made based on the best result.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Artificial bee colony</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering ensembles</subject><subject>Customer segmentation</subject><subject>Genetic algorithm</subject><subject>Mobile communication systems</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Segmentation</subject><subject>Strategy</subject><subject>Swarm intelligence</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AxdZumlt0qZNN8Iw-AUDzkLX4TV5ncnQNjVJBf-9Hce1q8eFcy-8Q8gty1KWsfL-kA44adenfE5pVqQZq87IgsmKJ5LL8pwsspqLhOeMX5KrEA7ZTDBeL4hdDRTGsbMaonUDdS0F2mOEPU7ehmg1hW7nvI37PmkgoKG6m0JEb4cdxSFg33R4bOydodHR1XZL9Qy4Hj0NuOtxiL_T1-SihS7gzd9dko-nx_f1S7J5e35drzaJzmseE5BGQsWxKXgjKg2thpKBMYXUjWFFmTNheCvbphYIAsuWNVCLHExR8gpYni_J3Wl39O5zwhBVb4PGroMB3RQUk1yIomSCzWhxQrV3IXhs1ehtD_5bsUwdzaqDOplVR7MqK9Tsba49nGo4v_Fl0augLQ4ajfWoozLO_j_wA8W2hrI</recordid><startdate>20160912</startdate><enddate>20160912</enddate><creator>Kuo, R.J.</creator><creator>Mei, C.H.</creator><creator>Zulvia, F.E.</creator><creator>Tsai, C.Y.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160912</creationdate><title>An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation</title><author>Kuo, R.J. ; Mei, C.H. ; Zulvia, F.E. ; Tsai, C.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Artificial bee colony</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering ensembles</topic><topic>Customer segmentation</topic><topic>Genetic algorithm</topic><topic>Mobile communication systems</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Segmentation</topic><topic>Strategy</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, R.J.</creatorcontrib><creatorcontrib>Mei, C.H.</creatorcontrib><creatorcontrib>Zulvia, F.E.</creatorcontrib><creatorcontrib>Tsai, C.Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, R.J.</au><au>Mei, C.H.</au><au>Zulvia, F.E.</au><au>Tsai, C.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2016-09-12</date><risdate>2016</risdate><volume>205</volume><spage>116</spage><epage>129</epage><pages>116-129</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence approach. In order to improve the efficiency, a principle component analysis is employed. Furthermore, three metaheuristic-based clustering algorithms are proposed. This paper uses a real-coded genetic algorithm, a particle swarm optimization and an artificial bee colony optimization to combine with clustering ensembles algorithm. The experimental results indicate that the proposed metaheuristic-based clustering ensembles algorithms have better performance than metaheuristic-based clustering without clustering ensembles method. Furthermore, the proposed algorithms are applied to solve a customer segmentation problem. The real problem is come from a mobile application. Among all of the proposed algorithms, the artificial bee colony optimization-based clustering ensembles algorithm outperforms other algorithms. Therefore, the marketing strategy for the real application is made based on the best result.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2016.04.017</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2016-09, Vol.205, p.116-129 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825546151 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Applications programs Artificial bee colony Cluster analysis Clustering Clustering ensembles Customer segmentation Genetic algorithm Mobile communication systems Optimization Particle swarm optimization Segmentation Strategy Swarm intelligence |
title | An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20a%20metaheuristic%20algorithm-based%20clustering%20ensemble%20method%20to%20APP%20customer%20segmentation&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Kuo,%20R.J.&rft.date=2016-09-12&rft.volume=205&rft.spage=116&rft.epage=129&rft.pages=116-129&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2016.04.017&rft_dat=%3Cproquest_cross%3E1825546151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825546151&rft_id=info:pmid/&rfr_iscdi=true |