Loading…

An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation

This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2016-09, Vol.205, p.116-129
Main Authors: Kuo, R.J., Mei, C.H., Zulvia, F.E., Tsai, C.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133
cites cdi_FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133
container_end_page 129
container_issue
container_start_page 116
container_title Neurocomputing (Amsterdam)
container_volume 205
creator Kuo, R.J.
Mei, C.H.
Zulvia, F.E.
Tsai, C.Y.
description This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence approach. In order to improve the efficiency, a principle component analysis is employed. Furthermore, three metaheuristic-based clustering algorithms are proposed. This paper uses a real-coded genetic algorithm, a particle swarm optimization and an artificial bee colony optimization to combine with clustering ensembles algorithm. The experimental results indicate that the proposed metaheuristic-based clustering ensembles algorithms have better performance than metaheuristic-based clustering without clustering ensembles method. Furthermore, the proposed algorithms are applied to solve a customer segmentation problem. The real problem is come from a mobile application. Among all of the proposed algorithms, the artificial bee colony optimization-based clustering ensembles algorithm outperforms other algorithms. Therefore, the marketing strategy for the real application is made based on the best result.
doi_str_mv 10.1016/j.neucom.2016.04.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825546151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231216302612</els_id><sourcerecordid>1825546151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AxdZumlt0qZNN8Iw-AUDzkLX4TV5ncnQNjVJBf-9Hce1q8eFcy-8Q8gty1KWsfL-kA44adenfE5pVqQZq87IgsmKJ5LL8pwsspqLhOeMX5KrEA7ZTDBeL4hdDRTGsbMaonUDdS0F2mOEPU7ehmg1hW7nvI37PmkgoKG6m0JEb4cdxSFg33R4bOydodHR1XZL9Qy4Hj0NuOtxiL_T1-SihS7gzd9dko-nx_f1S7J5e35drzaJzmseE5BGQsWxKXgjKg2thpKBMYXUjWFFmTNheCvbphYIAsuWNVCLHExR8gpYni_J3Wl39O5zwhBVb4PGroMB3RQUk1yIomSCzWhxQrV3IXhs1ehtD_5bsUwdzaqDOplVR7MqK9Tsba49nGo4v_Fl0augLQ4ajfWoozLO_j_wA8W2hrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825546151</pqid></control><display><type>article</type><title>An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation</title><source>ScienceDirect Freedom Collection</source><creator>Kuo, R.J. ; Mei, C.H. ; Zulvia, F.E. ; Tsai, C.Y.</creator><creatorcontrib>Kuo, R.J. ; Mei, C.H. ; Zulvia, F.E. ; Tsai, C.Y.</creatorcontrib><description>This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence approach. In order to improve the efficiency, a principle component analysis is employed. Furthermore, three metaheuristic-based clustering algorithms are proposed. This paper uses a real-coded genetic algorithm, a particle swarm optimization and an artificial bee colony optimization to combine with clustering ensembles algorithm. The experimental results indicate that the proposed metaheuristic-based clustering ensembles algorithms have better performance than metaheuristic-based clustering without clustering ensembles method. Furthermore, the proposed algorithms are applied to solve a customer segmentation problem. The real problem is come from a mobile application. Among all of the proposed algorithms, the artificial bee colony optimization-based clustering ensembles algorithm outperforms other algorithms. Therefore, the marketing strategy for the real application is made based on the best result.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2016.04.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Applications programs ; Artificial bee colony ; Cluster analysis ; Clustering ; Clustering ensembles ; Customer segmentation ; Genetic algorithm ; Mobile communication systems ; Optimization ; Particle swarm optimization ; Segmentation ; Strategy ; Swarm intelligence</subject><ispartof>Neurocomputing (Amsterdam), 2016-09, Vol.205, p.116-129</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133</citedby><cites>FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuo, R.J.</creatorcontrib><creatorcontrib>Mei, C.H.</creatorcontrib><creatorcontrib>Zulvia, F.E.</creatorcontrib><creatorcontrib>Tsai, C.Y.</creatorcontrib><title>An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation</title><title>Neurocomputing (Amsterdam)</title><description>This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence approach. In order to improve the efficiency, a principle component analysis is employed. Furthermore, three metaheuristic-based clustering algorithms are proposed. This paper uses a real-coded genetic algorithm, a particle swarm optimization and an artificial bee colony optimization to combine with clustering ensembles algorithm. The experimental results indicate that the proposed metaheuristic-based clustering ensembles algorithms have better performance than metaheuristic-based clustering without clustering ensembles method. Furthermore, the proposed algorithms are applied to solve a customer segmentation problem. The real problem is come from a mobile application. Among all of the proposed algorithms, the artificial bee colony optimization-based clustering ensembles algorithm outperforms other algorithms. Therefore, the marketing strategy for the real application is made based on the best result.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Artificial bee colony</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering ensembles</subject><subject>Customer segmentation</subject><subject>Genetic algorithm</subject><subject>Mobile communication systems</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Segmentation</subject><subject>Strategy</subject><subject>Swarm intelligence</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AxdZumlt0qZNN8Iw-AUDzkLX4TV5ncnQNjVJBf-9Hce1q8eFcy-8Q8gty1KWsfL-kA44adenfE5pVqQZq87IgsmKJ5LL8pwsspqLhOeMX5KrEA7ZTDBeL4hdDRTGsbMaonUDdS0F2mOEPU7ehmg1hW7nvI37PmkgoKG6m0JEb4cdxSFg33R4bOydodHR1XZL9Qy4Hj0NuOtxiL_T1-SihS7gzd9dko-nx_f1S7J5e35drzaJzmseE5BGQsWxKXgjKg2thpKBMYXUjWFFmTNheCvbphYIAsuWNVCLHExR8gpYni_J3Wl39O5zwhBVb4PGroMB3RQUk1yIomSCzWhxQrV3IXhs1ehtD_5bsUwdzaqDOplVR7MqK9Tsba49nGo4v_Fl0augLQ4ajfWoozLO_j_wA8W2hrI</recordid><startdate>20160912</startdate><enddate>20160912</enddate><creator>Kuo, R.J.</creator><creator>Mei, C.H.</creator><creator>Zulvia, F.E.</creator><creator>Tsai, C.Y.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160912</creationdate><title>An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation</title><author>Kuo, R.J. ; Mei, C.H. ; Zulvia, F.E. ; Tsai, C.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Artificial bee colony</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering ensembles</topic><topic>Customer segmentation</topic><topic>Genetic algorithm</topic><topic>Mobile communication systems</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Segmentation</topic><topic>Strategy</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, R.J.</creatorcontrib><creatorcontrib>Mei, C.H.</creatorcontrib><creatorcontrib>Zulvia, F.E.</creatorcontrib><creatorcontrib>Tsai, C.Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, R.J.</au><au>Mei, C.H.</au><au>Zulvia, F.E.</au><au>Tsai, C.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2016-09-12</date><risdate>2016</risdate><volume>205</volume><spage>116</spage><epage>129</epage><pages>116-129</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This study proposes a metaheuristic-based clustering ensemble method. It integrates the clustering ensembles algorithm with the metaheuristic-based clustering algorithm. In the clustering ensembles, this study performs an improved generation mechanism and a co-association matrix in the co-occurrence approach. In order to improve the efficiency, a principle component analysis is employed. Furthermore, three metaheuristic-based clustering algorithms are proposed. This paper uses a real-coded genetic algorithm, a particle swarm optimization and an artificial bee colony optimization to combine with clustering ensembles algorithm. The experimental results indicate that the proposed metaheuristic-based clustering ensembles algorithms have better performance than metaheuristic-based clustering without clustering ensembles method. Furthermore, the proposed algorithms are applied to solve a customer segmentation problem. The real problem is come from a mobile application. Among all of the proposed algorithms, the artificial bee colony optimization-based clustering ensembles algorithm outperforms other algorithms. Therefore, the marketing strategy for the real application is made based on the best result.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2016.04.017</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2016-09, Vol.205, p.116-129
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1825546151
source ScienceDirect Freedom Collection
subjects Algorithms
Applications programs
Artificial bee colony
Cluster analysis
Clustering
Clustering ensembles
Customer segmentation
Genetic algorithm
Mobile communication systems
Optimization
Particle swarm optimization
Segmentation
Strategy
Swarm intelligence
title An application of a metaheuristic algorithm-based clustering ensemble method to APP customer segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20application%20of%20a%20metaheuristic%20algorithm-based%20clustering%20ensemble%20method%20to%20APP%20customer%20segmentation&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Kuo,%20R.J.&rft.date=2016-09-12&rft.volume=205&rft.spage=116&rft.epage=129&rft.pages=116-129&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2016.04.017&rft_dat=%3Cproquest_cross%3E1825546151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-a8d8a72eb42b57cafca61add48cbd146315d2f8fb95ea5e6f1ba953ad4627a133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825546151&rft_id=info:pmid/&rfr_iscdi=true