Loading…

Conductivity Enhancement of Binder-Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling

This paper describes a combination of photonic annealing and compression rolling to improve the conductive properties of printed binder‐based graphene inks. High‐density light pulses result in temperatures up to 500 °C that along with a decrease of resistivity lead to layer expansion. The structural...

Full description

Saved in:
Bibliographic Details
Published in:Advanced engineering materials 2016-07, Vol.18 (7), p.1234-1239
Main Authors: Arapov, Kirill, Bex, Guy, Hendriks, Rob, Rubingh, Eric, Abbel, Robert, de With, Gijsbertus, Friedrich, Heiner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5406-1b1385c874370875c3b0de837aca1a3b363fb35171d7386ea2a206c2d3b5d64f3
cites cdi_FETCH-LOGICAL-c5406-1b1385c874370875c3b0de837aca1a3b363fb35171d7386ea2a206c2d3b5d64f3
container_end_page 1239
container_issue 7
container_start_page 1234
container_title Advanced engineering materials
container_volume 18
creator Arapov, Kirill
Bex, Guy
Hendriks, Rob
Rubingh, Eric
Abbel, Robert
de With, Gijsbertus
Friedrich, Heiner
description This paper describes a combination of photonic annealing and compression rolling to improve the conductive properties of printed binder‐based graphene inks. High‐density light pulses result in temperatures up to 500 °C that along with a decrease of resistivity lead to layer expansion. The structural integrity of the printed layers is restored using compression rolling resulting in smooth, dense, and highly conductive graphene films. The layers exhibit a sheet resistance of less than 1.4 Ω □−1 normalized to 25 µm thickness. The proposed approach can potentially be used in a roll‐to‐roll manner with common substrates, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and paper, paving thereby the road toward high‐volume graphene‐printed electronics. Conductivity enhancement for high‐definition binder‐based graphene inks by photonic annealing with subsequent compression rolling is demonstrated. High‐density light pulses result in a five times decrease of sheet resistance and a layer expansion. Compression rolling restores the structure lowering sheet resistance further reaching 1.4 Ω □−1 when normalized to 25 µm thickness.
doi_str_mv 10.1002/adem.201500646
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825548960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825548960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5406-1b1385c874370875c3b0de837aca1a3b363fb35171d7386ea2a206c2d3b5d64f3</originalsourceid><addsrcrecordid>eNqFkLlOAzEURUcIJNaW2iXNBC_jhTKEEJDYxCJKy2O_IYYZO9gTIH9PoiBER_Vucc7V0y2KQ4IHBGN6bBx0A4oJx1hUYqPYIZzKkopKbS5zxVRJBBfbxW7OrxgTggnbKeIoBje3vf_w_QKNw9QECx2EHsUGnfrgIJWnJoNDk2RmUwiALsNbRvUC3U1jH4O3aBgCmNaHF2SCQw_zOsP7fFUxit0sQc4-BnQf2xWyX2w1ps1w8HP3iqfz8ePoory6nVyOhlel5RUWJakJU9wqWTGJleSW1diBYtJYQwyrmWBNzTiRxEmmBBhqKBaWOlZzJ6qG7RVH695Zistncq87ny20rQkQ51kTRTmv1InAS3SwRm2KOSdo9Cz5zqSFJlivltWrZfXvskvhZC18-hYW_9B6eDa-_uuWa9fnHr5-XZPetJBMcv18M9GcTu4f6PWzVuwbwGuMxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825548960</pqid></control><display><type>article</type><title>Conductivity Enhancement of Binder-Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling</title><source>Wiley</source><creator>Arapov, Kirill ; Bex, Guy ; Hendriks, Rob ; Rubingh, Eric ; Abbel, Robert ; de With, Gijsbertus ; Friedrich, Heiner</creator><creatorcontrib>Arapov, Kirill ; Bex, Guy ; Hendriks, Rob ; Rubingh, Eric ; Abbel, Robert ; de With, Gijsbertus ; Friedrich, Heiner</creatorcontrib><description>This paper describes a combination of photonic annealing and compression rolling to improve the conductive properties of printed binder‐based graphene inks. High‐density light pulses result in temperatures up to 500 °C that along with a decrease of resistivity lead to layer expansion. The structural integrity of the printed layers is restored using compression rolling resulting in smooth, dense, and highly conductive graphene films. The layers exhibit a sheet resistance of less than 1.4 Ω □−1 normalized to 25 µm thickness. The proposed approach can potentially be used in a roll‐to‐roll manner with common substrates, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and paper, paving thereby the road toward high‐volume graphene‐printed electronics. Conductivity enhancement for high‐definition binder‐based graphene inks by photonic annealing with subsequent compression rolling is demonstrated. High‐density light pulses result in a five times decrease of sheet resistance and a layer expansion. Compression rolling restores the structure lowering sheet resistance further reaching 1.4 Ω □−1 when normalized to 25 µm thickness.</description><identifier>ISSN: 1438-1656</identifier><identifier>EISSN: 1527-2648</identifier><identifier>DOI: 10.1002/adem.201500646</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Annealing ; Compressing ; Electrical resistivity ; Graphene ; High density ; Inks ; Photonics ; Polyethylene terephthalates</subject><ispartof>Advanced engineering materials, 2016-07, Vol.18 (7), p.1234-1239</ispartof><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5406-1b1385c874370875c3b0de837aca1a3b363fb35171d7386ea2a206c2d3b5d64f3</citedby><cites>FETCH-LOGICAL-c5406-1b1385c874370875c3b0de837aca1a3b363fb35171d7386ea2a206c2d3b5d64f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Arapov, Kirill</creatorcontrib><creatorcontrib>Bex, Guy</creatorcontrib><creatorcontrib>Hendriks, Rob</creatorcontrib><creatorcontrib>Rubingh, Eric</creatorcontrib><creatorcontrib>Abbel, Robert</creatorcontrib><creatorcontrib>de With, Gijsbertus</creatorcontrib><creatorcontrib>Friedrich, Heiner</creatorcontrib><title>Conductivity Enhancement of Binder-Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling</title><title>Advanced engineering materials</title><addtitle>Adv. Eng. Mater</addtitle><description>This paper describes a combination of photonic annealing and compression rolling to improve the conductive properties of printed binder‐based graphene inks. High‐density light pulses result in temperatures up to 500 °C that along with a decrease of resistivity lead to layer expansion. The structural integrity of the printed layers is restored using compression rolling resulting in smooth, dense, and highly conductive graphene films. The layers exhibit a sheet resistance of less than 1.4 Ω □−1 normalized to 25 µm thickness. The proposed approach can potentially be used in a roll‐to‐roll manner with common substrates, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and paper, paving thereby the road toward high‐volume graphene‐printed electronics. Conductivity enhancement for high‐definition binder‐based graphene inks by photonic annealing with subsequent compression rolling is demonstrated. High‐density light pulses result in a five times decrease of sheet resistance and a layer expansion. Compression rolling restores the structure lowering sheet resistance further reaching 1.4 Ω □−1 when normalized to 25 µm thickness.</description><subject>Annealing</subject><subject>Compressing</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>High density</subject><subject>Inks</subject><subject>Photonics</subject><subject>Polyethylene terephthalates</subject><issn>1438-1656</issn><issn>1527-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkLlOAzEURUcIJNaW2iXNBC_jhTKEEJDYxCJKy2O_IYYZO9gTIH9PoiBER_Vucc7V0y2KQ4IHBGN6bBx0A4oJx1hUYqPYIZzKkopKbS5zxVRJBBfbxW7OrxgTggnbKeIoBje3vf_w_QKNw9QECx2EHsUGnfrgIJWnJoNDk2RmUwiALsNbRvUC3U1jH4O3aBgCmNaHF2SCQw_zOsP7fFUxit0sQc4-BnQf2xWyX2w1ps1w8HP3iqfz8ePoory6nVyOhlel5RUWJakJU9wqWTGJleSW1diBYtJYQwyrmWBNzTiRxEmmBBhqKBaWOlZzJ6qG7RVH695Zistncq87ny20rQkQ51kTRTmv1InAS3SwRm2KOSdo9Cz5zqSFJlivltWrZfXvskvhZC18-hYW_9B6eDa-_uuWa9fnHr5-XZPetJBMcv18M9GcTu4f6PWzVuwbwGuMxg</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Arapov, Kirill</creator><creator>Bex, Guy</creator><creator>Hendriks, Rob</creator><creator>Rubingh, Eric</creator><creator>Abbel, Robert</creator><creator>de With, Gijsbertus</creator><creator>Friedrich, Heiner</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201607</creationdate><title>Conductivity Enhancement of Binder-Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling</title><author>Arapov, Kirill ; Bex, Guy ; Hendriks, Rob ; Rubingh, Eric ; Abbel, Robert ; de With, Gijsbertus ; Friedrich, Heiner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5406-1b1385c874370875c3b0de837aca1a3b363fb35171d7386ea2a206c2d3b5d64f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Compressing</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>High density</topic><topic>Inks</topic><topic>Photonics</topic><topic>Polyethylene terephthalates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arapov, Kirill</creatorcontrib><creatorcontrib>Bex, Guy</creatorcontrib><creatorcontrib>Hendriks, Rob</creatorcontrib><creatorcontrib>Rubingh, Eric</creatorcontrib><creatorcontrib>Abbel, Robert</creatorcontrib><creatorcontrib>de With, Gijsbertus</creatorcontrib><creatorcontrib>Friedrich, Heiner</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arapov, Kirill</au><au>Bex, Guy</au><au>Hendriks, Rob</au><au>Rubingh, Eric</au><au>Abbel, Robert</au><au>de With, Gijsbertus</au><au>Friedrich, Heiner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductivity Enhancement of Binder-Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling</atitle><jtitle>Advanced engineering materials</jtitle><addtitle>Adv. Eng. Mater</addtitle><date>2016-07</date><risdate>2016</risdate><volume>18</volume><issue>7</issue><spage>1234</spage><epage>1239</epage><pages>1234-1239</pages><issn>1438-1656</issn><eissn>1527-2648</eissn><abstract>This paper describes a combination of photonic annealing and compression rolling to improve the conductive properties of printed binder‐based graphene inks. High‐density light pulses result in temperatures up to 500 °C that along with a decrease of resistivity lead to layer expansion. The structural integrity of the printed layers is restored using compression rolling resulting in smooth, dense, and highly conductive graphene films. The layers exhibit a sheet resistance of less than 1.4 Ω □−1 normalized to 25 µm thickness. The proposed approach can potentially be used in a roll‐to‐roll manner with common substrates, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and paper, paving thereby the road toward high‐volume graphene‐printed electronics. Conductivity enhancement for high‐definition binder‐based graphene inks by photonic annealing with subsequent compression rolling is demonstrated. High‐density light pulses result in a five times decrease of sheet resistance and a layer expansion. Compression rolling restores the structure lowering sheet resistance further reaching 1.4 Ω □−1 when normalized to 25 µm thickness.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adem.201500646</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1438-1656
ispartof Advanced engineering materials, 2016-07, Vol.18 (7), p.1234-1239
issn 1438-1656
1527-2648
language eng
recordid cdi_proquest_miscellaneous_1825548960
source Wiley
subjects Annealing
Compressing
Electrical resistivity
Graphene
High density
Inks
Photonics
Polyethylene terephthalates
title Conductivity Enhancement of Binder-Based Graphene Inks by Photonic Annealing and Subsequent Compression Rolling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductivity%20Enhancement%20of%20Binder-Based%20Graphene%20Inks%20by%20Photonic%20Annealing%20and%20Subsequent%20Compression%20Rolling&rft.jtitle=Advanced%20engineering%20materials&rft.au=Arapov,%20Kirill&rft.date=2016-07&rft.volume=18&rft.issue=7&rft.spage=1234&rft.epage=1239&rft.pages=1234-1239&rft.issn=1438-1656&rft.eissn=1527-2648&rft_id=info:doi/10.1002/adem.201500646&rft_dat=%3Cproquest_cross%3E1825548960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5406-1b1385c874370875c3b0de837aca1a3b363fb35171d7386ea2a206c2d3b5d64f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825548960&rft_id=info:pmid/&rfr_iscdi=true