Loading…

Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam

In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versu...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2016-05, Vol.84 (3), p.1289-1302
Main Authors: Mamouri, S., Kouli, R., Benzegaou, A., Ibrahimbegovic, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43
cites cdi_FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43
container_end_page 1302
container_issue 3
container_start_page 1289
container_title Nonlinear dynamics
container_volume 84
creator Mamouri, S.
Kouli, R.
Benzegaou, A.
Ibrahimbegovic, A.
description In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes.
doi_str_mv 10.1007/s11071-015-2567-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825550705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259429946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43</originalsourceid><addsrcrecordid>eNp1kU1r3DAURUVJoZO0P6A7QTfdKHmSJctalnxDIJsEshOy_DyjYEtTyRMy_74KUwgEsnqbcy_vcgj5yeGUA-izwjlozoArJlSrmfhCVlzphonWPB2RFRghGRh4-kaOS3kGgEZAtyLz7bydgg8L9SkuOU2T6yekm7DesDHj3x1Gv6dDKCVs3RJekBa_wRnpmDKNKU4host02Ec3B19oGqm4oGtMMy45eDdNe4qvzi-0Rzd_J19HNxX88f-ekMery4fzG3Z3f317_ueO-UaahflOml4Zo7sBpBy57hAkHwxIAKGNdsZj3ctblI2Dlvt-0NKPvEdZmUE2J-T3oXebU51QFjuH4rGOi5h2xfJOKKVAg6rorw_oc9rlWL-zQigjhTGyrRQ_UD6nUjKOdpvD7PLecrBvAuxBgK0C7JsAK2pGHDKlsnGN-b3589A_kf-Iuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259429946</pqid></control><display><type>article</type><title>Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Mamouri, S. ; Kouli, R. ; Benzegaou, A. ; Ibrahimbegovic, A.</creator><creatorcontrib>Mamouri, S. ; Kouli, R. ; Benzegaou, A. ; Ibrahimbegovic, A.</creatorcontrib><description>In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2567-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bending ; Classical Mechanics ; Computer simulation ; Control ; Decay ; Deformation ; Differential equations ; Dynamic stability ; Dynamical Systems ; Engineering ; Finite element method ; Formability ; Mathematical models ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Robustness ; Robustness (mathematics) ; Stability ; Stiffness ; Two dimensional ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-05, Vol.84 (3), p.1289-1302</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43</citedby><cites>FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mamouri, S.</creatorcontrib><creatorcontrib>Kouli, R.</creatorcontrib><creatorcontrib>Benzegaou, A.</creatorcontrib><creatorcontrib>Ibrahimbegovic, A.</creatorcontrib><title>Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes.</description><subject>Automotive Engineering</subject><subject>Bending</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Decay</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Stability</subject><subject>Stiffness</subject><subject>Two dimensional</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAURUVJoZO0P6A7QTfdKHmSJctalnxDIJsEshOy_DyjYEtTyRMy_74KUwgEsnqbcy_vcgj5yeGUA-izwjlozoArJlSrmfhCVlzphonWPB2RFRghGRh4-kaOS3kGgEZAtyLz7bydgg8L9SkuOU2T6yekm7DesDHj3x1Gv6dDKCVs3RJekBa_wRnpmDKNKU4host02Ec3B19oGqm4oGtMMy45eDdNe4qvzi-0Rzd_J19HNxX88f-ekMery4fzG3Z3f317_ueO-UaahflOml4Zo7sBpBy57hAkHwxIAKGNdsZj3ctblI2Dlvt-0NKPvEdZmUE2J-T3oXebU51QFjuH4rGOi5h2xfJOKKVAg6rorw_oc9rlWL-zQigjhTGyrRQ_UD6nUjKOdpvD7PLecrBvAuxBgK0C7JsAK2pGHDKlsnGN-b3589A_kf-Iuw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Mamouri, S.</creator><creator>Kouli, R.</creator><creator>Benzegaou, A.</creator><creator>Ibrahimbegovic, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam</title><author>Mamouri, S. ; Kouli, R. ; Benzegaou, A. ; Ibrahimbegovic, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Bending</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Decay</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Stability</topic><topic>Stiffness</topic><topic>Two dimensional</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamouri, S.</creatorcontrib><creatorcontrib>Kouli, R.</creatorcontrib><creatorcontrib>Benzegaou, A.</creatorcontrib><creatorcontrib>Ibrahimbegovic, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamouri, S.</au><au>Kouli, R.</au><au>Benzegaou, A.</au><au>Ibrahimbegovic, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>84</volume><issue>3</issue><spage>1289</spage><epage>1302</epage><pages>1289-1302</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2567-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2016-05, Vol.84 (3), p.1289-1302
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1825550705
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Automotive Engineering
Bending
Classical Mechanics
Computer simulation
Control
Decay
Deformation
Differential equations
Dynamic stability
Dynamical Systems
Engineering
Finite element method
Formability
Mathematical models
Mechanical Engineering
Nonlinear dynamics
Original Paper
Robustness
Robustness (mathematics)
Stability
Stiffness
Two dimensional
Vibration
title Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit%20controllable%20high-frequency%20dissipative%20scheme%20for%20nonlinear%20dynamics%20of%202D%20geometrically%20exact%20beam&rft.jtitle=Nonlinear%20dynamics&rft.au=Mamouri,%20S.&rft.date=2016-05-01&rft.volume=84&rft.issue=3&rft.spage=1289&rft.epage=1302&rft.pages=1289-1302&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2567-2&rft_dat=%3Cproquest_cross%3E2259429946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259429946&rft_id=info:pmid/&rfr_iscdi=true