Loading…
Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam
In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versu...
Saved in:
Published in: | Nonlinear dynamics 2016-05, Vol.84 (3), p.1289-1302 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43 |
container_end_page | 1302 |
container_issue | 3 |
container_start_page | 1289 |
container_title | Nonlinear dynamics |
container_volume | 84 |
creator | Mamouri, S. Kouli, R. Benzegaou, A. Ibrahimbegovic, A. |
description | In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes. |
doi_str_mv | 10.1007/s11071-015-2567-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825550705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259429946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43</originalsourceid><addsrcrecordid>eNp1kU1r3DAURUVJoZO0P6A7QTfdKHmSJctalnxDIJsEshOy_DyjYEtTyRMy_74KUwgEsnqbcy_vcgj5yeGUA-izwjlozoArJlSrmfhCVlzphonWPB2RFRghGRh4-kaOS3kGgEZAtyLz7bydgg8L9SkuOU2T6yekm7DesDHj3x1Gv6dDKCVs3RJekBa_wRnpmDKNKU4host02Ec3B19oGqm4oGtMMy45eDdNe4qvzi-0Rzd_J19HNxX88f-ekMery4fzG3Z3f317_ueO-UaahflOml4Zo7sBpBy57hAkHwxIAKGNdsZj3ctblI2Dlvt-0NKPvEdZmUE2J-T3oXebU51QFjuH4rGOi5h2xfJOKKVAg6rorw_oc9rlWL-zQigjhTGyrRQ_UD6nUjKOdpvD7PLecrBvAuxBgK0C7JsAK2pGHDKlsnGN-b3589A_kf-Iuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259429946</pqid></control><display><type>article</type><title>Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Mamouri, S. ; Kouli, R. ; Benzegaou, A. ; Ibrahimbegovic, A.</creator><creatorcontrib>Mamouri, S. ; Kouli, R. ; Benzegaou, A. ; Ibrahimbegovic, A.</creatorcontrib><description>In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-015-2567-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bending ; Classical Mechanics ; Computer simulation ; Control ; Decay ; Deformation ; Differential equations ; Dynamic stability ; Dynamical Systems ; Engineering ; Finite element method ; Formability ; Mathematical models ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Robustness ; Robustness (mathematics) ; Stability ; Stiffness ; Two dimensional ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-05, Vol.84 (3), p.1289-1302</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43</citedby><cites>FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mamouri, S.</creatorcontrib><creatorcontrib>Kouli, R.</creatorcontrib><creatorcontrib>Benzegaou, A.</creatorcontrib><creatorcontrib>Ibrahimbegovic, A.</creatorcontrib><title>Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes.</description><subject>Automotive Engineering</subject><subject>Bending</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Decay</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Dynamic stability</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Stability</subject><subject>Stiffness</subject><subject>Two dimensional</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAURUVJoZO0P6A7QTfdKHmSJctalnxDIJsEshOy_DyjYEtTyRMy_74KUwgEsnqbcy_vcgj5yeGUA-izwjlozoArJlSrmfhCVlzphonWPB2RFRghGRh4-kaOS3kGgEZAtyLz7bydgg8L9SkuOU2T6yekm7DesDHj3x1Gv6dDKCVs3RJekBa_wRnpmDKNKU4host02Ec3B19oGqm4oGtMMy45eDdNe4qvzi-0Rzd_J19HNxX88f-ekMery4fzG3Z3f317_ueO-UaahflOml4Zo7sBpBy57hAkHwxIAKGNdsZj3ctblI2Dlvt-0NKPvEdZmUE2J-T3oXebU51QFjuH4rGOi5h2xfJOKKVAg6rorw_oc9rlWL-zQigjhTGyrRQ_UD6nUjKOdpvD7PLecrBvAuxBgK0C7JsAK2pGHDKlsnGN-b3589A_kf-Iuw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Mamouri, S.</creator><creator>Kouli, R.</creator><creator>Benzegaou, A.</creator><creator>Ibrahimbegovic, A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160501</creationdate><title>Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam</title><author>Mamouri, S. ; Kouli, R. ; Benzegaou, A. ; Ibrahimbegovic, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Bending</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Decay</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Dynamic stability</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Stability</topic><topic>Stiffness</topic><topic>Two dimensional</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamouri, S.</creatorcontrib><creatorcontrib>Kouli, R.</creatorcontrib><creatorcontrib>Benzegaou, A.</creatorcontrib><creatorcontrib>Ibrahimbegovic, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamouri, S.</au><au>Kouli, R.</au><au>Benzegaou, A.</au><au>Ibrahimbegovic, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>84</volume><issue>3</issue><spage>1289</spage><epage>1302</epage><pages>1289-1302</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-015-2567-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2016-05, Vol.84 (3), p.1289-1302 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_miscellaneous_1825550705 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Automotive Engineering Bending Classical Mechanics Computer simulation Control Decay Deformation Differential equations Dynamic stability Dynamical Systems Engineering Finite element method Formability Mathematical models Mechanical Engineering Nonlinear dynamics Original Paper Robustness Robustness (mathematics) Stability Stiffness Two dimensional Vibration |
title | Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit%20controllable%20high-frequency%20dissipative%20scheme%20for%20nonlinear%20dynamics%20of%202D%20geometrically%20exact%20beam&rft.jtitle=Nonlinear%20dynamics&rft.au=Mamouri,%20S.&rft.date=2016-05-01&rft.volume=84&rft.issue=3&rft.spage=1289&rft.epage=1302&rft.pages=1289-1302&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-015-2567-2&rft_dat=%3Cproquest_cross%3E2259429946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-c849b59978d044f178e041d904002797a9ce11016e43a061cbd74cf1be4904d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259429946&rft_id=info:pmid/&rfr_iscdi=true |