Loading…

Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy

Abstract Immunogenic cell death (ICD) occurs when apoptotic tumor cell elicits a specific immune response, which may trigger an anti-tumor effect, via the release of immunostimulatory damage-associated molecular patterns (DAMPs). Hypothesizing that nanomedicines may impact ICD due to their proven ad...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2016-09, Vol.102, p.187-197
Main Authors: Zhao, Xiao, Yang, Keni, Zhao, Ruifang, Ji, Tianjiao, Wang, Xiuchao, Yang, Xiao, Zhang, Yinlong, Cheng, Keman, Liu, Shaoli, Hao, Jihui, Ren, He, Leong, Kam W, Nie, Guangjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-a2be923342ba6c0642ebdaf541c89ac2412db08895f78b57b8b5172bdd0473683
cites cdi_FETCH-LOGICAL-c501t-a2be923342ba6c0642ebdaf541c89ac2412db08895f78b57b8b5172bdd0473683
container_end_page 197
container_issue
container_start_page 187
container_title Biomaterials
container_volume 102
creator Zhao, Xiao
Yang, Keni
Zhao, Ruifang
Ji, Tianjiao
Wang, Xiuchao
Yang, Xiao
Zhang, Yinlong
Cheng, Keman
Liu, Shaoli
Hao, Jihui
Ren, He
Leong, Kam W
Nie, Guangjun
description Abstract Immunogenic cell death (ICD) occurs when apoptotic tumor cell elicits a specific immune response, which may trigger an anti-tumor effect, via the release of immunostimulatory damage-associated molecular patterns (DAMPs). Hypothesizing that nanomedicines may impact ICD due to their proven advantages in delivery of chemotherapeutics, we encapsulated oxaliplatin (OXA) or gemcitabine (GEM), an ICD and a non-ICD inducer respectively, into the amphiphilic diblock copolymer nanoparticles. Neither GEM nor nanoparticle-encapsulated GEM (NP-GEM) induced ICD, while both OXA and nanoparticle-encapsulated OXA (NP-OXA) induced ICD. Interestingly, NP-OXA treated tumor cells released more DAMPs and induced stronger immune responses of dendritic cells and T lymphocytes than OXA treatment in vitro . Furthermore, OXA and NP-OXA exhibited stronger therapeutic effects in immunocompetent mice than in immunodeficient mice, and the enhancement of therapeutic efficacy was significantly higher in the NP-OXA group than the OXA group. Moreover, NP-OXA treatment induced a higher proportion of tumor infiltrating activated cytotoxic T-lymphocytes than OXA treatment. This general trend of enhanced ICD by nanoparticle delivery was corroborated in evaluating another pair of ICD inducer and non-ICD inducer, doxorubicin and 5-fluorouracil. In conclusion, although nanoparticle encapsulation did not endow a non-ICD inducer with ICD-mediated anti-tumor capacity, treatment with a nanoparticle-encapsulated ICD inducer led to significantly enhanced ICD and consequently improved anti-tumor effects than the free ICD inducer. The proposed nanomedicine approach may impact cancer immunotherapy via the novel cell death mechanism of ICD.
doi_str_mv 10.1016/j.biomaterials.2016.06.032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825560909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961216302861</els_id><sourcerecordid>1808688438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-a2be923342ba6c0642ebdaf541c89ac2412db08895f78b57b8b5172bdd0473683</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhL6CIE5cs4484DgckVKCtVIkDcLYce7LrJXEWO2mVf4-jLQhxWmk0lq1n3rH9DiFvKGwpUPnusG39OJgJozd92rJ8toUcnD0hG6pqVVYNVE_JBqhgZSMpuyAvUjpA3oNgz8kFq7ngQsoNSbfBzdaHXYFhb4JFV_hhmMO4w-BtYbHvC4dm2hcPPqdgwmhNjB5j2ZqUaRfnXSZ6f49xKdKSJhxS0Y2xOGa5mEtXmVU5FtMeozkuL8mzLl8cXz2ul-THl8_fr27Ku6_Xt1cf70pbAZ1Kw1psGOeCtUZakIJh60xXCWpVYywTlLkWlGqqrlZtVbc50Zq1zoGouVT8krw96R7j-GvGNOnBp_VFJuA4J00VqyoJDTRnoKCkUoKfowqsFhwqmdH3J9TGMaWInT5GP5i4aAp6tVIf9L9W6tVKDTk4y8WvH_vM7YDub-kf7zLw6QRg_sP77IhO1uNqoY9oJ-1Gf16fD__J2N5n703_ExdMh3GOYa2hOjEN-ts6VOtMUcmBKUn5b63_zI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802743056</pqid></control><display><type>article</type><title>Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zhao, Xiao ; Yang, Keni ; Zhao, Ruifang ; Ji, Tianjiao ; Wang, Xiuchao ; Yang, Xiao ; Zhang, Yinlong ; Cheng, Keman ; Liu, Shaoli ; Hao, Jihui ; Ren, He ; Leong, Kam W ; Nie, Guangjun</creator><creatorcontrib>Zhao, Xiao ; Yang, Keni ; Zhao, Ruifang ; Ji, Tianjiao ; Wang, Xiuchao ; Yang, Xiao ; Zhang, Yinlong ; Cheng, Keman ; Liu, Shaoli ; Hao, Jihui ; Ren, He ; Leong, Kam W ; Nie, Guangjun</creatorcontrib><description>Abstract Immunogenic cell death (ICD) occurs when apoptotic tumor cell elicits a specific immune response, which may trigger an anti-tumor effect, via the release of immunostimulatory damage-associated molecular patterns (DAMPs). Hypothesizing that nanomedicines may impact ICD due to their proven advantages in delivery of chemotherapeutics, we encapsulated oxaliplatin (OXA) or gemcitabine (GEM), an ICD and a non-ICD inducer respectively, into the amphiphilic diblock copolymer nanoparticles. Neither GEM nor nanoparticle-encapsulated GEM (NP-GEM) induced ICD, while both OXA and nanoparticle-encapsulated OXA (NP-OXA) induced ICD. Interestingly, NP-OXA treated tumor cells released more DAMPs and induced stronger immune responses of dendritic cells and T lymphocytes than OXA treatment in vitro . Furthermore, OXA and NP-OXA exhibited stronger therapeutic effects in immunocompetent mice than in immunodeficient mice, and the enhancement of therapeutic efficacy was significantly higher in the NP-OXA group than the OXA group. Moreover, NP-OXA treatment induced a higher proportion of tumor infiltrating activated cytotoxic T-lymphocytes than OXA treatment. This general trend of enhanced ICD by nanoparticle delivery was corroborated in evaluating another pair of ICD inducer and non-ICD inducer, doxorubicin and 5-fluorouracil. In conclusion, although nanoparticle encapsulation did not endow a non-ICD inducer with ICD-mediated anti-tumor capacity, treatment with a nanoparticle-encapsulated ICD inducer led to significantly enhanced ICD and consequently improved anti-tumor effects than the free ICD inducer. The proposed nanomedicine approach may impact cancer immunotherapy via the novel cell death mechanism of ICD.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.06.032</identifier><identifier>PMID: 27343466</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Antineoplastic Agents - administration &amp; dosage ; Antineoplastic Agents - therapeutic use ; Cancer ; Cell death ; Cell Death - drug effects ; Cell Line, Tumor ; Dendritic cells ; Dendritic Cells - drug effects ; Dendritic Cells - immunology ; Dendritic Cells - pathology ; Dentistry ; Drug Delivery Systems ; Encapsulation ; Female ; Gemcitabine ; Humans ; Immunogenic cell death ; Immunotherapy - methods ; Inducers ; Interferon-gamma - analysis ; Interferon-gamma - immunology ; Mice ; Mice, Inbred C57BL ; Nanocarriers ; Nanoparticles ; Nanoparticles - administration &amp; dosage ; Nanoparticles - therapeutic use ; Nanostructure ; Organoplatinum Compounds - administration &amp; dosage ; Organoplatinum Compounds - therapeutic use ; Oxaliplatin ; Pancreas - drug effects ; Pancreas - immunology ; Pancreas - pathology ; Pancreatic cancer ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - immunology ; Pancreatic Neoplasms - pathology ; Pancreatic Neoplasms - therapy ; T-Lymphocytes, Cytotoxic - drug effects ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Cytotoxic - pathology ; Tumors</subject><ispartof>Biomaterials, 2016-09, Vol.102, p.187-197</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-a2be923342ba6c0642ebdaf541c89ac2412db08895f78b57b8b5172bdd0473683</citedby><cites>FETCH-LOGICAL-c501t-a2be923342ba6c0642ebdaf541c89ac2412db08895f78b57b8b5172bdd0473683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27343466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xiao</creatorcontrib><creatorcontrib>Yang, Keni</creatorcontrib><creatorcontrib>Zhao, Ruifang</creatorcontrib><creatorcontrib>Ji, Tianjiao</creatorcontrib><creatorcontrib>Wang, Xiuchao</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Yinlong</creatorcontrib><creatorcontrib>Cheng, Keman</creatorcontrib><creatorcontrib>Liu, Shaoli</creatorcontrib><creatorcontrib>Hao, Jihui</creatorcontrib><creatorcontrib>Ren, He</creatorcontrib><creatorcontrib>Leong, Kam W</creatorcontrib><creatorcontrib>Nie, Guangjun</creatorcontrib><title>Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Immunogenic cell death (ICD) occurs when apoptotic tumor cell elicits a specific immune response, which may trigger an anti-tumor effect, via the release of immunostimulatory damage-associated molecular patterns (DAMPs). Hypothesizing that nanomedicines may impact ICD due to their proven advantages in delivery of chemotherapeutics, we encapsulated oxaliplatin (OXA) or gemcitabine (GEM), an ICD and a non-ICD inducer respectively, into the amphiphilic diblock copolymer nanoparticles. Neither GEM nor nanoparticle-encapsulated GEM (NP-GEM) induced ICD, while both OXA and nanoparticle-encapsulated OXA (NP-OXA) induced ICD. Interestingly, NP-OXA treated tumor cells released more DAMPs and induced stronger immune responses of dendritic cells and T lymphocytes than OXA treatment in vitro . Furthermore, OXA and NP-OXA exhibited stronger therapeutic effects in immunocompetent mice than in immunodeficient mice, and the enhancement of therapeutic efficacy was significantly higher in the NP-OXA group than the OXA group. Moreover, NP-OXA treatment induced a higher proportion of tumor infiltrating activated cytotoxic T-lymphocytes than OXA treatment. This general trend of enhanced ICD by nanoparticle delivery was corroborated in evaluating another pair of ICD inducer and non-ICD inducer, doxorubicin and 5-fluorouracil. In conclusion, although nanoparticle encapsulation did not endow a non-ICD inducer with ICD-mediated anti-tumor capacity, treatment with a nanoparticle-encapsulated ICD inducer led to significantly enhanced ICD and consequently improved anti-tumor effects than the free ICD inducer. The proposed nanomedicine approach may impact cancer immunotherapy via the novel cell death mechanism of ICD.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Antineoplastic Agents - administration &amp; dosage</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Cancer</subject><subject>Cell death</subject><subject>Cell Death - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - drug effects</subject><subject>Dendritic Cells - immunology</subject><subject>Dendritic Cells - pathology</subject><subject>Dentistry</subject><subject>Drug Delivery Systems</subject><subject>Encapsulation</subject><subject>Female</subject><subject>Gemcitabine</subject><subject>Humans</subject><subject>Immunogenic cell death</subject><subject>Immunotherapy - methods</subject><subject>Inducers</subject><subject>Interferon-gamma - analysis</subject><subject>Interferon-gamma - immunology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanocarriers</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - therapeutic use</subject><subject>Nanostructure</subject><subject>Organoplatinum Compounds - administration &amp; dosage</subject><subject>Organoplatinum Compounds - therapeutic use</subject><subject>Oxaliplatin</subject><subject>Pancreas - drug effects</subject><subject>Pancreas - immunology</subject><subject>Pancreas - pathology</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - immunology</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Pancreatic Neoplasms - therapy</subject><subject>T-Lymphocytes, Cytotoxic - drug effects</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Cytotoxic - pathology</subject><subject>Tumors</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EokvhL6CIE5cs4484DgckVKCtVIkDcLYce7LrJXEWO2mVf4-jLQhxWmk0lq1n3rH9DiFvKGwpUPnusG39OJgJozd92rJ8toUcnD0hG6pqVVYNVE_JBqhgZSMpuyAvUjpA3oNgz8kFq7ngQsoNSbfBzdaHXYFhb4JFV_hhmMO4w-BtYbHvC4dm2hcPPqdgwmhNjB5j2ZqUaRfnXSZ6f49xKdKSJhxS0Y2xOGa5mEtXmVU5FtMeozkuL8mzLl8cXz2ul-THl8_fr27Ku6_Xt1cf70pbAZ1Kw1psGOeCtUZakIJh60xXCWpVYywTlLkWlGqqrlZtVbc50Zq1zoGouVT8krw96R7j-GvGNOnBp_VFJuA4J00VqyoJDTRnoKCkUoKfowqsFhwqmdH3J9TGMaWInT5GP5i4aAp6tVIf9L9W6tVKDTk4y8WvH_vM7YDub-kf7zLw6QRg_sP77IhO1uNqoY9oJ-1Gf16fD__J2N5n703_ExdMh3GOYa2hOjEN-ts6VOtMUcmBKUn5b63_zI0</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Zhao, Xiao</creator><creator>Yang, Keni</creator><creator>Zhao, Ruifang</creator><creator>Ji, Tianjiao</creator><creator>Wang, Xiuchao</creator><creator>Yang, Xiao</creator><creator>Zhang, Yinlong</creator><creator>Cheng, Keman</creator><creator>Liu, Shaoli</creator><creator>Hao, Jihui</creator><creator>Ren, He</creator><creator>Leong, Kam W</creator><creator>Nie, Guangjun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy</title><author>Zhao, Xiao ; Yang, Keni ; Zhao, Ruifang ; Ji, Tianjiao ; Wang, Xiuchao ; Yang, Xiao ; Zhang, Yinlong ; Cheng, Keman ; Liu, Shaoli ; Hao, Jihui ; Ren, He ; Leong, Kam W ; Nie, Guangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-a2be923342ba6c0642ebdaf541c89ac2412db08895f78b57b8b5172bdd0473683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Antineoplastic Agents - administration &amp; dosage</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Cancer</topic><topic>Cell death</topic><topic>Cell Death - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - drug effects</topic><topic>Dendritic Cells - immunology</topic><topic>Dendritic Cells - pathology</topic><topic>Dentistry</topic><topic>Drug Delivery Systems</topic><topic>Encapsulation</topic><topic>Female</topic><topic>Gemcitabine</topic><topic>Humans</topic><topic>Immunogenic cell death</topic><topic>Immunotherapy - methods</topic><topic>Inducers</topic><topic>Interferon-gamma - analysis</topic><topic>Interferon-gamma - immunology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanocarriers</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - therapeutic use</topic><topic>Nanostructure</topic><topic>Organoplatinum Compounds - administration &amp; dosage</topic><topic>Organoplatinum Compounds - therapeutic use</topic><topic>Oxaliplatin</topic><topic>Pancreas - drug effects</topic><topic>Pancreas - immunology</topic><topic>Pancreas - pathology</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - immunology</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Pancreatic Neoplasms - therapy</topic><topic>T-Lymphocytes, Cytotoxic - drug effects</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Cytotoxic - pathology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiao</creatorcontrib><creatorcontrib>Yang, Keni</creatorcontrib><creatorcontrib>Zhao, Ruifang</creatorcontrib><creatorcontrib>Ji, Tianjiao</creatorcontrib><creatorcontrib>Wang, Xiuchao</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhang, Yinlong</creatorcontrib><creatorcontrib>Cheng, Keman</creatorcontrib><creatorcontrib>Liu, Shaoli</creatorcontrib><creatorcontrib>Hao, Jihui</creatorcontrib><creatorcontrib>Ren, He</creatorcontrib><creatorcontrib>Leong, Kam W</creatorcontrib><creatorcontrib>Nie, Guangjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiao</au><au>Yang, Keni</au><au>Zhao, Ruifang</au><au>Ji, Tianjiao</au><au>Wang, Xiuchao</au><au>Yang, Xiao</au><au>Zhang, Yinlong</au><au>Cheng, Keman</au><au>Liu, Shaoli</au><au>Hao, Jihui</au><au>Ren, He</au><au>Leong, Kam W</au><au>Nie, Guangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>102</volume><spage>187</spage><epage>197</epage><pages>187-197</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Immunogenic cell death (ICD) occurs when apoptotic tumor cell elicits a specific immune response, which may trigger an anti-tumor effect, via the release of immunostimulatory damage-associated molecular patterns (DAMPs). Hypothesizing that nanomedicines may impact ICD due to their proven advantages in delivery of chemotherapeutics, we encapsulated oxaliplatin (OXA) or gemcitabine (GEM), an ICD and a non-ICD inducer respectively, into the amphiphilic diblock copolymer nanoparticles. Neither GEM nor nanoparticle-encapsulated GEM (NP-GEM) induced ICD, while both OXA and nanoparticle-encapsulated OXA (NP-OXA) induced ICD. Interestingly, NP-OXA treated tumor cells released more DAMPs and induced stronger immune responses of dendritic cells and T lymphocytes than OXA treatment in vitro . Furthermore, OXA and NP-OXA exhibited stronger therapeutic effects in immunocompetent mice than in immunodeficient mice, and the enhancement of therapeutic efficacy was significantly higher in the NP-OXA group than the OXA group. Moreover, NP-OXA treatment induced a higher proportion of tumor infiltrating activated cytotoxic T-lymphocytes than OXA treatment. This general trend of enhanced ICD by nanoparticle delivery was corroborated in evaluating another pair of ICD inducer and non-ICD inducer, doxorubicin and 5-fluorouracil. In conclusion, although nanoparticle encapsulation did not endow a non-ICD inducer with ICD-mediated anti-tumor capacity, treatment with a nanoparticle-encapsulated ICD inducer led to significantly enhanced ICD and consequently improved anti-tumor effects than the free ICD inducer. The proposed nanomedicine approach may impact cancer immunotherapy via the novel cell death mechanism of ICD.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27343466</pmid><doi>10.1016/j.biomaterials.2016.06.032</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2016-09, Vol.102, p.187-197
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1825560909
source ScienceDirect Freedom Collection 2022-2024
subjects Advanced Basic Science
Animals
Antineoplastic Agents - administration & dosage
Antineoplastic Agents - therapeutic use
Cancer
Cell death
Cell Death - drug effects
Cell Line, Tumor
Dendritic cells
Dendritic Cells - drug effects
Dendritic Cells - immunology
Dendritic Cells - pathology
Dentistry
Drug Delivery Systems
Encapsulation
Female
Gemcitabine
Humans
Immunogenic cell death
Immunotherapy - methods
Inducers
Interferon-gamma - analysis
Interferon-gamma - immunology
Mice
Mice, Inbred C57BL
Nanocarriers
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - therapeutic use
Nanostructure
Organoplatinum Compounds - administration & dosage
Organoplatinum Compounds - therapeutic use
Oxaliplatin
Pancreas - drug effects
Pancreas - immunology
Pancreas - pathology
Pancreatic cancer
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - immunology
Pancreatic Neoplasms - pathology
Pancreatic Neoplasms - therapy
T-Lymphocytes, Cytotoxic - drug effects
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Cytotoxic - pathology
Tumors
title Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inducing%20enhanced%20immunogenic%20cell%20death%20with%20nanocarrier-based%20drug%20delivery%20systems%20for%20pancreatic%20cancer%20therapy&rft.jtitle=Biomaterials&rft.au=Zhao,%20Xiao&rft.date=2016-09-01&rft.volume=102&rft.spage=187&rft.epage=197&rft.pages=187-197&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.06.032&rft_dat=%3Cproquest_cross%3E1808688438%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-a2be923342ba6c0642ebdaf541c89ac2412db08895f78b57b8b5172bdd0473683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1802743056&rft_id=info:pmid/27343466&rfr_iscdi=true