Loading…

Can machine learning aid in delivering new use cases and scenarios in 5G?

5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management...

Full description

Saved in:
Bibliographic Details
Main Authors: Buda, Teodora Sandra, Assem, Haytham, Xu, Lei, Raz, Danny, Margolin, Udi, Rosensweig, Elisha, Lopez, Diego R., Corici, Marius-Iulian, Smirnov, Mikhail, Mullins, Robert, Uryupina, Olga, Mozo, Alberto, Ordozgoiti, Bruno, Martin, Angel, Alloush, Alaa, O'Sullivan, Pat, Grida Ben Yahia, Imen
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1284
container_issue
container_start_page 1279
container_title
container_volume
creator Buda, Teodora Sandra
Assem, Haytham
Xu, Lei
Raz, Danny
Margolin, Udi
Rosensweig, Elisha
Lopez, Diego R.
Corici, Marius-Iulian
Smirnov, Mikhail
Mullins, Robert
Uryupina, Olga
Mozo, Alberto
Ordozgoiti, Bruno
Martin, Angel
Alloush, Alaa
O'Sullivan, Pat
Grida Ben Yahia, Imen
description 5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management and energy efficiency. Consequently, novel techniques and strategies are required to address these challenges in a smarter way. In this paper, we present the limitations of the current network and service management and describe in detail the challenges that 5G is expected to face from a management perspective. The main contribution of this paper is presenting a set of use cases and scenarios of 5G in which machine learning can aid in addressing their management challenges. It is expected that machine learning can provide a higher and more intelligent level of monitoring and management of networks and applications, improve operational efficiencies and facilitate the requirements of the future 5G network.
doi_str_mv 10.1109/NOMS.2016.7503003
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825561134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7503003</ieee_id><sourcerecordid>1825561134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i274t-af79d41d0feaf8fbfad264e5b15b915bbab162b2159ee0e174be2ab51e61b8923</originalsourceid><addsrcrecordid>eNotkE9Lw0AUxFdBsK1-APGyRy-J7-2fpHsSKVoL1R7Uc3jbvOhKuq3ZVvHbm9IehoHhxzCMEFcIOSK425fF82uuAIu8tKAB9IkYogUHoJS2p2KgdGkyV4I7F8OUvgBM2XMDMZtQlCtafobIsmXqYogfkkItQ5Q1t-GHu30S-VfuEsslJU6SYi3TkiN1YZ32pJ3eXYizhtrEl0cfiffHh7fJUzZfTGeT-3kWVGm2GTWlqw3W0DA148Y3VKvCsPVovevlyWOhvELrmIGxNJ4VeYtcoB87pUfi5tC76dbfO07bahX6LW1Lkde7VOFYWVsgatOj1wc0MHO16cKKur_q-JD-B_M5WZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1825561134</pqid></control><display><type>conference_proceeding</type><title>Can machine learning aid in delivering new use cases and scenarios in 5G?</title><source>IEEE Xplore All Conference Series</source><creator>Buda, Teodora Sandra ; Assem, Haytham ; Xu, Lei ; Raz, Danny ; Margolin, Udi ; Rosensweig, Elisha ; Lopez, Diego R. ; Corici, Marius-Iulian ; Smirnov, Mikhail ; Mullins, Robert ; Uryupina, Olga ; Mozo, Alberto ; Ordozgoiti, Bruno ; Martin, Angel ; Alloush, Alaa ; O'Sullivan, Pat ; Grida Ben Yahia, Imen</creator><creatorcontrib>Buda, Teodora Sandra ; Assem, Haytham ; Xu, Lei ; Raz, Danny ; Margolin, Udi ; Rosensweig, Elisha ; Lopez, Diego R. ; Corici, Marius-Iulian ; Smirnov, Mikhail ; Mullins, Robert ; Uryupina, Olga ; Mozo, Alberto ; Ordozgoiti, Bruno ; Martin, Angel ; Alloush, Alaa ; O'Sullivan, Pat ; Grida Ben Yahia, Imen</creatorcontrib><description>5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management and energy efficiency. Consequently, novel techniques and strategies are required to address these challenges in a smarter way. In this paper, we present the limitations of the current network and service management and describe in detail the challenges that 5G is expected to face from a management perspective. The main contribution of this paper is presenting a set of use cases and scenarios of 5G in which machine learning can aid in addressing their management challenges. It is expected that machine learning can provide a higher and more intelligent level of monitoring and management of networks and applications, improve operational efficiencies and facilitate the requirements of the future 5G network.</description><identifier>EISSN: 2374-9709</identifier><identifier>EISBN: 1509002235</identifier><identifier>EISBN: 9781509002238</identifier><identifier>DOI: 10.1109/NOMS.2016.7503003</identifier><language>eng</language><publisher>IEEE</publisher><subject>5G mobile communication ; Communication networks ; Conferences ; Context ; Degradation ; Machine learning ; Management ; Monitoring ; Network topology ; Networks ; Resource management ; Resources management ; Strategy ; Topology</subject><ispartof>IEEE/IFIP Network Operations and Management Symposium, 2016, p.1279-1284</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7503003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7503003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buda, Teodora Sandra</creatorcontrib><creatorcontrib>Assem, Haytham</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Raz, Danny</creatorcontrib><creatorcontrib>Margolin, Udi</creatorcontrib><creatorcontrib>Rosensweig, Elisha</creatorcontrib><creatorcontrib>Lopez, Diego R.</creatorcontrib><creatorcontrib>Corici, Marius-Iulian</creatorcontrib><creatorcontrib>Smirnov, Mikhail</creatorcontrib><creatorcontrib>Mullins, Robert</creatorcontrib><creatorcontrib>Uryupina, Olga</creatorcontrib><creatorcontrib>Mozo, Alberto</creatorcontrib><creatorcontrib>Ordozgoiti, Bruno</creatorcontrib><creatorcontrib>Martin, Angel</creatorcontrib><creatorcontrib>Alloush, Alaa</creatorcontrib><creatorcontrib>O'Sullivan, Pat</creatorcontrib><creatorcontrib>Grida Ben Yahia, Imen</creatorcontrib><title>Can machine learning aid in delivering new use cases and scenarios in 5G?</title><title>IEEE/IFIP Network Operations and Management Symposium</title><addtitle>NOMS</addtitle><description>5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management and energy efficiency. Consequently, novel techniques and strategies are required to address these challenges in a smarter way. In this paper, we present the limitations of the current network and service management and describe in detail the challenges that 5G is expected to face from a management perspective. The main contribution of this paper is presenting a set of use cases and scenarios of 5G in which machine learning can aid in addressing their management challenges. It is expected that machine learning can provide a higher and more intelligent level of monitoring and management of networks and applications, improve operational efficiencies and facilitate the requirements of the future 5G network.</description><subject>5G mobile communication</subject><subject>Communication networks</subject><subject>Conferences</subject><subject>Context</subject><subject>Degradation</subject><subject>Machine learning</subject><subject>Management</subject><subject>Monitoring</subject><subject>Network topology</subject><subject>Networks</subject><subject>Resource management</subject><subject>Resources management</subject><subject>Strategy</subject><subject>Topology</subject><issn>2374-9709</issn><isbn>1509002235</isbn><isbn>9781509002238</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE9Lw0AUxFdBsK1-APGyRy-J7-2fpHsSKVoL1R7Uc3jbvOhKuq3ZVvHbm9IehoHhxzCMEFcIOSK425fF82uuAIu8tKAB9IkYogUHoJS2p2KgdGkyV4I7F8OUvgBM2XMDMZtQlCtafobIsmXqYogfkkItQ5Q1t-GHu30S-VfuEsslJU6SYi3TkiN1YZ32pJ3eXYizhtrEl0cfiffHh7fJUzZfTGeT-3kWVGm2GTWlqw3W0DA148Y3VKvCsPVovevlyWOhvELrmIGxNJ4VeYtcoB87pUfi5tC76dbfO07bahX6LW1Lkde7VOFYWVsgatOj1wc0MHO16cKKur_q-JD-B_M5WZw</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Buda, Teodora Sandra</creator><creator>Assem, Haytham</creator><creator>Xu, Lei</creator><creator>Raz, Danny</creator><creator>Margolin, Udi</creator><creator>Rosensweig, Elisha</creator><creator>Lopez, Diego R.</creator><creator>Corici, Marius-Iulian</creator><creator>Smirnov, Mikhail</creator><creator>Mullins, Robert</creator><creator>Uryupina, Olga</creator><creator>Mozo, Alberto</creator><creator>Ordozgoiti, Bruno</creator><creator>Martin, Angel</creator><creator>Alloush, Alaa</creator><creator>O'Sullivan, Pat</creator><creator>Grida Ben Yahia, Imen</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160401</creationdate><title>Can machine learning aid in delivering new use cases and scenarios in 5G?</title><author>Buda, Teodora Sandra ; Assem, Haytham ; Xu, Lei ; Raz, Danny ; Margolin, Udi ; Rosensweig, Elisha ; Lopez, Diego R. ; Corici, Marius-Iulian ; Smirnov, Mikhail ; Mullins, Robert ; Uryupina, Olga ; Mozo, Alberto ; Ordozgoiti, Bruno ; Martin, Angel ; Alloush, Alaa ; O'Sullivan, Pat ; Grida Ben Yahia, Imen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i274t-af79d41d0feaf8fbfad264e5b15b915bbab162b2159ee0e174be2ab51e61b8923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>5G mobile communication</topic><topic>Communication networks</topic><topic>Conferences</topic><topic>Context</topic><topic>Degradation</topic><topic>Machine learning</topic><topic>Management</topic><topic>Monitoring</topic><topic>Network topology</topic><topic>Networks</topic><topic>Resource management</topic><topic>Resources management</topic><topic>Strategy</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Buda, Teodora Sandra</creatorcontrib><creatorcontrib>Assem, Haytham</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Raz, Danny</creatorcontrib><creatorcontrib>Margolin, Udi</creatorcontrib><creatorcontrib>Rosensweig, Elisha</creatorcontrib><creatorcontrib>Lopez, Diego R.</creatorcontrib><creatorcontrib>Corici, Marius-Iulian</creatorcontrib><creatorcontrib>Smirnov, Mikhail</creatorcontrib><creatorcontrib>Mullins, Robert</creatorcontrib><creatorcontrib>Uryupina, Olga</creatorcontrib><creatorcontrib>Mozo, Alberto</creatorcontrib><creatorcontrib>Ordozgoiti, Bruno</creatorcontrib><creatorcontrib>Martin, Angel</creatorcontrib><creatorcontrib>Alloush, Alaa</creatorcontrib><creatorcontrib>O'Sullivan, Pat</creatorcontrib><creatorcontrib>Grida Ben Yahia, Imen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buda, Teodora Sandra</au><au>Assem, Haytham</au><au>Xu, Lei</au><au>Raz, Danny</au><au>Margolin, Udi</au><au>Rosensweig, Elisha</au><au>Lopez, Diego R.</au><au>Corici, Marius-Iulian</au><au>Smirnov, Mikhail</au><au>Mullins, Robert</au><au>Uryupina, Olga</au><au>Mozo, Alberto</au><au>Ordozgoiti, Bruno</au><au>Martin, Angel</au><au>Alloush, Alaa</au><au>O'Sullivan, Pat</au><au>Grida Ben Yahia, Imen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Can machine learning aid in delivering new use cases and scenarios in 5G?</atitle><btitle>IEEE/IFIP Network Operations and Management Symposium</btitle><stitle>NOMS</stitle><date>2016-04-01</date><risdate>2016</risdate><spage>1279</spage><epage>1284</epage><pages>1279-1284</pages><eissn>2374-9709</eissn><eisbn>1509002235</eisbn><eisbn>9781509002238</eisbn><abstract>5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management and energy efficiency. Consequently, novel techniques and strategies are required to address these challenges in a smarter way. In this paper, we present the limitations of the current network and service management and describe in detail the challenges that 5G is expected to face from a management perspective. The main contribution of this paper is presenting a set of use cases and scenarios of 5G in which machine learning can aid in addressing their management challenges. It is expected that machine learning can provide a higher and more intelligent level of monitoring and management of networks and applications, improve operational efficiencies and facilitate the requirements of the future 5G network.</abstract><pub>IEEE</pub><doi>10.1109/NOMS.2016.7503003</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2374-9709
ispartof IEEE/IFIP Network Operations and Management Symposium, 2016, p.1279-1284
issn 2374-9709
language eng
recordid cdi_proquest_miscellaneous_1825561134
source IEEE Xplore All Conference Series
subjects 5G mobile communication
Communication networks
Conferences
Context
Degradation
Machine learning
Management
Monitoring
Network topology
Networks
Resource management
Resources management
Strategy
Topology
title Can machine learning aid in delivering new use cases and scenarios in 5G?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Can%20machine%20learning%20aid%20in%20delivering%20new%20use%20cases%20and%20scenarios%20in%205G?&rft.btitle=IEEE/IFIP%20Network%20Operations%20and%20Management%20Symposium&rft.au=Buda,%20Teodora%20Sandra&rft.date=2016-04-01&rft.spage=1279&rft.epage=1284&rft.pages=1279-1284&rft.eissn=2374-9709&rft_id=info:doi/10.1109/NOMS.2016.7503003&rft.eisbn=1509002235&rft.eisbn_list=9781509002238&rft_dat=%3Cproquest_CHZPO%3E1825561134%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i274t-af79d41d0feaf8fbfad264e5b15b915bbab162b2159ee0e174be2ab51e61b8923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825561134&rft_id=info:pmid/&rft_ieee_id=7503003&rfr_iscdi=true