Loading…
Can machine learning aid in delivering new use cases and scenarios in 5G?
5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1284 |
container_issue | |
container_start_page | 1279 |
container_title | |
container_volume | |
creator | Buda, Teodora Sandra Assem, Haytham Xu, Lei Raz, Danny Margolin, Udi Rosensweig, Elisha Lopez, Diego R. Corici, Marius-Iulian Smirnov, Mikhail Mullins, Robert Uryupina, Olga Mozo, Alberto Ordozgoiti, Bruno Martin, Angel Alloush, Alaa O'Sullivan, Pat Grida Ben Yahia, Imen |
description | 5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management and energy efficiency. Consequently, novel techniques and strategies are required to address these challenges in a smarter way. In this paper, we present the limitations of the current network and service management and describe in detail the challenges that 5G is expected to face from a management perspective. The main contribution of this paper is presenting a set of use cases and scenarios of 5G in which machine learning can aid in addressing their management challenges. It is expected that machine learning can provide a higher and more intelligent level of monitoring and management of networks and applications, improve operational efficiencies and facilitate the requirements of the future 5G network. |
doi_str_mv | 10.1109/NOMS.2016.7503003 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825561134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7503003</ieee_id><sourcerecordid>1825561134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i274t-af79d41d0feaf8fbfad264e5b15b915bbab162b2159ee0e174be2ab51e61b8923</originalsourceid><addsrcrecordid>eNotkE9Lw0AUxFdBsK1-APGyRy-J7-2fpHsSKVoL1R7Uc3jbvOhKuq3ZVvHbm9IehoHhxzCMEFcIOSK425fF82uuAIu8tKAB9IkYogUHoJS2p2KgdGkyV4I7F8OUvgBM2XMDMZtQlCtafobIsmXqYogfkkItQ5Q1t-GHu30S-VfuEsslJU6SYi3TkiN1YZ32pJ3eXYizhtrEl0cfiffHh7fJUzZfTGeT-3kWVGm2GTWlqw3W0DA148Y3VKvCsPVovevlyWOhvELrmIGxNJ4VeYtcoB87pUfi5tC76dbfO07bahX6LW1Lkde7VOFYWVsgatOj1wc0MHO16cKKur_q-JD-B_M5WZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1825561134</pqid></control><display><type>conference_proceeding</type><title>Can machine learning aid in delivering new use cases and scenarios in 5G?</title><source>IEEE Xplore All Conference Series</source><creator>Buda, Teodora Sandra ; Assem, Haytham ; Xu, Lei ; Raz, Danny ; Margolin, Udi ; Rosensweig, Elisha ; Lopez, Diego R. ; Corici, Marius-Iulian ; Smirnov, Mikhail ; Mullins, Robert ; Uryupina, Olga ; Mozo, Alberto ; Ordozgoiti, Bruno ; Martin, Angel ; Alloush, Alaa ; O'Sullivan, Pat ; Grida Ben Yahia, Imen</creator><creatorcontrib>Buda, Teodora Sandra ; Assem, Haytham ; Xu, Lei ; Raz, Danny ; Margolin, Udi ; Rosensweig, Elisha ; Lopez, Diego R. ; Corici, Marius-Iulian ; Smirnov, Mikhail ; Mullins, Robert ; Uryupina, Olga ; Mozo, Alberto ; Ordozgoiti, Bruno ; Martin, Angel ; Alloush, Alaa ; O'Sullivan, Pat ; Grida Ben Yahia, Imen</creatorcontrib><description>5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management and energy efficiency. Consequently, novel techniques and strategies are required to address these challenges in a smarter way. In this paper, we present the limitations of the current network and service management and describe in detail the challenges that 5G is expected to face from a management perspective. The main contribution of this paper is presenting a set of use cases and scenarios of 5G in which machine learning can aid in addressing their management challenges. It is expected that machine learning can provide a higher and more intelligent level of monitoring and management of networks and applications, improve operational efficiencies and facilitate the requirements of the future 5G network.</description><identifier>EISSN: 2374-9709</identifier><identifier>EISBN: 1509002235</identifier><identifier>EISBN: 9781509002238</identifier><identifier>DOI: 10.1109/NOMS.2016.7503003</identifier><language>eng</language><publisher>IEEE</publisher><subject>5G mobile communication ; Communication networks ; Conferences ; Context ; Degradation ; Machine learning ; Management ; Monitoring ; Network topology ; Networks ; Resource management ; Resources management ; Strategy ; Topology</subject><ispartof>IEEE/IFIP Network Operations and Management Symposium, 2016, p.1279-1284</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7503003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7503003$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Buda, Teodora Sandra</creatorcontrib><creatorcontrib>Assem, Haytham</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Raz, Danny</creatorcontrib><creatorcontrib>Margolin, Udi</creatorcontrib><creatorcontrib>Rosensweig, Elisha</creatorcontrib><creatorcontrib>Lopez, Diego R.</creatorcontrib><creatorcontrib>Corici, Marius-Iulian</creatorcontrib><creatorcontrib>Smirnov, Mikhail</creatorcontrib><creatorcontrib>Mullins, Robert</creatorcontrib><creatorcontrib>Uryupina, Olga</creatorcontrib><creatorcontrib>Mozo, Alberto</creatorcontrib><creatorcontrib>Ordozgoiti, Bruno</creatorcontrib><creatorcontrib>Martin, Angel</creatorcontrib><creatorcontrib>Alloush, Alaa</creatorcontrib><creatorcontrib>O'Sullivan, Pat</creatorcontrib><creatorcontrib>Grida Ben Yahia, Imen</creatorcontrib><title>Can machine learning aid in delivering new use cases and scenarios in 5G?</title><title>IEEE/IFIP Network Operations and Management Symposium</title><addtitle>NOMS</addtitle><description>5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management and energy efficiency. Consequently, novel techniques and strategies are required to address these challenges in a smarter way. In this paper, we present the limitations of the current network and service management and describe in detail the challenges that 5G is expected to face from a management perspective. The main contribution of this paper is presenting a set of use cases and scenarios of 5G in which machine learning can aid in addressing their management challenges. It is expected that machine learning can provide a higher and more intelligent level of monitoring and management of networks and applications, improve operational efficiencies and facilitate the requirements of the future 5G network.</description><subject>5G mobile communication</subject><subject>Communication networks</subject><subject>Conferences</subject><subject>Context</subject><subject>Degradation</subject><subject>Machine learning</subject><subject>Management</subject><subject>Monitoring</subject><subject>Network topology</subject><subject>Networks</subject><subject>Resource management</subject><subject>Resources management</subject><subject>Strategy</subject><subject>Topology</subject><issn>2374-9709</issn><isbn>1509002235</isbn><isbn>9781509002238</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE9Lw0AUxFdBsK1-APGyRy-J7-2fpHsSKVoL1R7Uc3jbvOhKuq3ZVvHbm9IehoHhxzCMEFcIOSK425fF82uuAIu8tKAB9IkYogUHoJS2p2KgdGkyV4I7F8OUvgBM2XMDMZtQlCtafobIsmXqYogfkkItQ5Q1t-GHu30S-VfuEsslJU6SYi3TkiN1YZ32pJ3eXYizhtrEl0cfiffHh7fJUzZfTGeT-3kWVGm2GTWlqw3W0DA148Y3VKvCsPVovevlyWOhvELrmIGxNJ4VeYtcoB87pUfi5tC76dbfO07bahX6LW1Lkde7VOFYWVsgatOj1wc0MHO16cKKur_q-JD-B_M5WZw</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Buda, Teodora Sandra</creator><creator>Assem, Haytham</creator><creator>Xu, Lei</creator><creator>Raz, Danny</creator><creator>Margolin, Udi</creator><creator>Rosensweig, Elisha</creator><creator>Lopez, Diego R.</creator><creator>Corici, Marius-Iulian</creator><creator>Smirnov, Mikhail</creator><creator>Mullins, Robert</creator><creator>Uryupina, Olga</creator><creator>Mozo, Alberto</creator><creator>Ordozgoiti, Bruno</creator><creator>Martin, Angel</creator><creator>Alloush, Alaa</creator><creator>O'Sullivan, Pat</creator><creator>Grida Ben Yahia, Imen</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160401</creationdate><title>Can machine learning aid in delivering new use cases and scenarios in 5G?</title><author>Buda, Teodora Sandra ; Assem, Haytham ; Xu, Lei ; Raz, Danny ; Margolin, Udi ; Rosensweig, Elisha ; Lopez, Diego R. ; Corici, Marius-Iulian ; Smirnov, Mikhail ; Mullins, Robert ; Uryupina, Olga ; Mozo, Alberto ; Ordozgoiti, Bruno ; Martin, Angel ; Alloush, Alaa ; O'Sullivan, Pat ; Grida Ben Yahia, Imen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i274t-af79d41d0feaf8fbfad264e5b15b915bbab162b2159ee0e174be2ab51e61b8923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>5G mobile communication</topic><topic>Communication networks</topic><topic>Conferences</topic><topic>Context</topic><topic>Degradation</topic><topic>Machine learning</topic><topic>Management</topic><topic>Monitoring</topic><topic>Network topology</topic><topic>Networks</topic><topic>Resource management</topic><topic>Resources management</topic><topic>Strategy</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Buda, Teodora Sandra</creatorcontrib><creatorcontrib>Assem, Haytham</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Raz, Danny</creatorcontrib><creatorcontrib>Margolin, Udi</creatorcontrib><creatorcontrib>Rosensweig, Elisha</creatorcontrib><creatorcontrib>Lopez, Diego R.</creatorcontrib><creatorcontrib>Corici, Marius-Iulian</creatorcontrib><creatorcontrib>Smirnov, Mikhail</creatorcontrib><creatorcontrib>Mullins, Robert</creatorcontrib><creatorcontrib>Uryupina, Olga</creatorcontrib><creatorcontrib>Mozo, Alberto</creatorcontrib><creatorcontrib>Ordozgoiti, Bruno</creatorcontrib><creatorcontrib>Martin, Angel</creatorcontrib><creatorcontrib>Alloush, Alaa</creatorcontrib><creatorcontrib>O'Sullivan, Pat</creatorcontrib><creatorcontrib>Grida Ben Yahia, Imen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Buda, Teodora Sandra</au><au>Assem, Haytham</au><au>Xu, Lei</au><au>Raz, Danny</au><au>Margolin, Udi</au><au>Rosensweig, Elisha</au><au>Lopez, Diego R.</au><au>Corici, Marius-Iulian</au><au>Smirnov, Mikhail</au><au>Mullins, Robert</au><au>Uryupina, Olga</au><au>Mozo, Alberto</au><au>Ordozgoiti, Bruno</au><au>Martin, Angel</au><au>Alloush, Alaa</au><au>O'Sullivan, Pat</au><au>Grida Ben Yahia, Imen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Can machine learning aid in delivering new use cases and scenarios in 5G?</atitle><btitle>IEEE/IFIP Network Operations and Management Symposium</btitle><stitle>NOMS</stitle><date>2016-04-01</date><risdate>2016</risdate><spage>1279</spage><epage>1284</epage><pages>1279-1284</pages><eissn>2374-9709</eissn><eisbn>1509002235</eisbn><eisbn>9781509002238</eisbn><abstract>5G represents the next generation of communication networks and services, and will bring a new set of use cases and scenarios. These in turn will address a new set of challenges from the network and service management perspective, such as network traffic and resource management, big data management and energy efficiency. Consequently, novel techniques and strategies are required to address these challenges in a smarter way. In this paper, we present the limitations of the current network and service management and describe in detail the challenges that 5G is expected to face from a management perspective. The main contribution of this paper is presenting a set of use cases and scenarios of 5G in which machine learning can aid in addressing their management challenges. It is expected that machine learning can provide a higher and more intelligent level of monitoring and management of networks and applications, improve operational efficiencies and facilitate the requirements of the future 5G network.</abstract><pub>IEEE</pub><doi>10.1109/NOMS.2016.7503003</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2374-9709 |
ispartof | IEEE/IFIP Network Operations and Management Symposium, 2016, p.1279-1284 |
issn | 2374-9709 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825561134 |
source | IEEE Xplore All Conference Series |
subjects | 5G mobile communication Communication networks Conferences Context Degradation Machine learning Management Monitoring Network topology Networks Resource management Resources management Strategy Topology |
title | Can machine learning aid in delivering new use cases and scenarios in 5G? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Can%20machine%20learning%20aid%20in%20delivering%20new%20use%20cases%20and%20scenarios%20in%205G?&rft.btitle=IEEE/IFIP%20Network%20Operations%20and%20Management%20Symposium&rft.au=Buda,%20Teodora%20Sandra&rft.date=2016-04-01&rft.spage=1279&rft.epage=1284&rft.pages=1279-1284&rft.eissn=2374-9709&rft_id=info:doi/10.1109/NOMS.2016.7503003&rft.eisbn=1509002235&rft.eisbn_list=9781509002238&rft_dat=%3Cproquest_CHZPO%3E1825561134%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i274t-af79d41d0feaf8fbfad264e5b15b915bbab162b2159ee0e174be2ab51e61b8923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825561134&rft_id=info:pmid/&rft_ieee_id=7503003&rfr_iscdi=true |