Loading…

Polymer brushes modified by photosensitive azobenzene containing polyamines

This paper describes a strategy for preparing photosensitive polymeric grafts on flat solid surfaces by loading diblock-copolymer or homopolymer brushes with cationic azobenzene-containing surfactants. In contrast to previous work, we utilize photosensitive surfactants that bear positively-charged p...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2016-08, Vol.98, p.421-428
Main Authors: Kopyshev, Alexey, Galvin, Casey J., Genzer, Jan, Lomadze, Nino, Santer, Svetlana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes a strategy for preparing photosensitive polymeric grafts on flat solid surfaces by loading diblock-copolymer or homopolymer brushes with cationic azobenzene-containing surfactants. In contrast to previous work, we utilize photosensitive surfactants that bear positively-charged polyamine head groups whose charge varies between 1+ and 3+. Poly(methylmethacrylate-b-methacrylic acid) (PMMA-b-PMAA) brushes were prepared by employing atom transfer radical polymerization, where the bottom poly(methyl methacrylate) block was grown first followed by the synthesis of t-butyl methacrylate block that after de-protection yielded poly(methacrylic acid). We used PMMA-b-PMAA brushes with constant grafting density and length of the PMMA block, and three different lengths of the PMAA block. The azobenzene-based surfactants attached only to the PMAA block. The degree of binding (i.e., the number of surfactant molecules per binding site on the brush backbone) of the surfactants to the brush depends strongly on the valence of the surfactant head-group; within the brushes the concentration of the surfactant carrying unit charge is larger than that of multivalent surfactants. We detect pronounced response of the brush topography on irradiation with UV interference pattern even at very low degree of binding (as small as 0.08) of multi-valence surfactant. Areas on the sample that receive the highest UV dose exhibit chain scission. By removing the ruptured chains from the substrate via good solvent, one uncovers a surface topographical relief grating, whose spatial arrangement follows the intensity distribution of the UV light on the sample during irradiation. Due to strong coupling of the multi-valence surfactants to the polymer brush, it was possible in some cases to completely remove the polyelectrolyte block from the PMMA layer. The application of multi-valence azobenzene surfactants for triggering brush photosensitive has important advantage over usage of surfactant with unit charge because relative to single-valence surfactants much lower concentrations of the multivalent surfactant are needed to achieve comparable response upon UV irradiation. [Display omitted] •Polymer brushes are triggered photosensitive by loading them with azobenzene containing surfactants.•Nanostructuring of photosensitive polymer brushes under irradiation.•Rupturing of polymer chains during SRG formation.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2016.03.050