Loading…

The synthesis of [(PbSe)1+δ]m(TiSe2)n[(SnSe2)1+γ]m(TiSe2)n heterostructures with designed nanoarchitectures by self assembly of amorphous precursors

Targeted heterostructures containing intergrown two dimensional (2D) layers of 3 different constituent layers, SnSe2, PbSe and TiSe2, were prepared by controlling the composition and sequence of elemental bilayers within a designed precursor. Varying the structure of the precursor enabled the number...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2016-07, Vol.8 (28), p.13646-13651
Main Authors: Merrill, Devin R, Sutherland, Duncan R, Ditto, Jeffrey J, Moore, Daniel B, Falmbigl, Matthias, Medlin, Douglas L, Johnson, David C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c235t-6777ff2c27e345d8bea1b4648129b92b08e403745900b0847d8a275d0d72e8833
cites cdi_FETCH-LOGICAL-c235t-6777ff2c27e345d8bea1b4648129b92b08e403745900b0847d8a275d0d72e8833
container_end_page 13651
container_issue 28
container_start_page 13646
container_title Nanoscale
container_volume 8
creator Merrill, Devin R
Sutherland, Duncan R
Ditto, Jeffrey J
Moore, Daniel B
Falmbigl, Matthias
Medlin, Douglas L
Johnson, David C
description Targeted heterostructures containing intergrown two dimensional (2D) layers of 3 different constituent layers, SnSe2, PbSe and TiSe2, were prepared by controlling the composition and sequence of elemental bilayers within a designed precursor. Varying the structure of the precursor enabled the number of structural units of each constituent and the sequence of crystalline 2D layers to be precisely controlled. The stacking of the 2D layers, their structures, and the segregation of the elements between them were determined using X-ray diffraction and electron microscopy techniques, with the observed sequence of the 2D layers consistent with the targeted intergrowth. This ability to prepare targeted heterostructures is critical, since the number of possible configurations in the final compound increases rapidly as the number of constituents increases, from almost 60 000 with two constituents to over 130 million with three constituents and to over 35 billion with four constituents for 20 or fewer distinct layers in the unit cell. This general route for synthesizing specific multiple component heterostructures will accelerate the feedback loop in this growing research area, permitting theorists to assume specific structures in the search for enhanced properties and providing experimentalists with crystallographically aligned samples to test these predictions.
doi_str_mv 10.1039/c6nr03406c
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825562492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1804857034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-6777ff2c27e345d8bea1b4648129b92b08e403745900b0847d8a275d0d72e8833</originalsourceid><addsrcrecordid>eNqNkUtOwzAQhi0E4r3hAMjLAio4tmMnS1TxkhAgWlYIRY4zIUF5FE8i1ItwETgHZ8KFAltW8_r0z2h-QnYCdhgwER9Z1TgmJFN2iaxzJtlQCM2Xf3Ml18gG4hNjKhZKrJI1rn0UQbhOXicFUJw1XQFYIm1zej-4ScewFxx8vD_Ug0k5Br7X3A_GzTzx3be_Li2gA9di53rb9Q6QvpRdQTMv9dhARhvTtMbZouxgMU9nFKHKqUGEOq1m84Wmbt20aHukUwe2d9g63CIruakQthdxk9ydnkxG58PL67OL0fHl0HIRdkOltc5zbrkGIcMsSsEEqVQyCnicxjxlEUgmtAxjxnwhdRYZrsOMZZpDFAmxSQbfulPXPveAXVKXaKGqTAP-oiSIeBgqLmP-D5TJKNTeCI_uf6PWPwcd5MnUlbVxsyRgydyyZKSubr8sG3l4d6HbpzVkv-iPR-ITU0OSgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804857034</pqid></control><display><type>article</type><title>The synthesis of [(PbSe)1+δ]m(TiSe2)n[(SnSe2)1+γ]m(TiSe2)n heterostructures with designed nanoarchitectures by self assembly of amorphous precursors</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Merrill, Devin R ; Sutherland, Duncan R ; Ditto, Jeffrey J ; Moore, Daniel B ; Falmbigl, Matthias ; Medlin, Douglas L ; Johnson, David C</creator><creatorcontrib>Merrill, Devin R ; Sutherland, Duncan R ; Ditto, Jeffrey J ; Moore, Daniel B ; Falmbigl, Matthias ; Medlin, Douglas L ; Johnson, David C</creatorcontrib><description>Targeted heterostructures containing intergrown two dimensional (2D) layers of 3 different constituent layers, SnSe2, PbSe and TiSe2, were prepared by controlling the composition and sequence of elemental bilayers within a designed precursor. Varying the structure of the precursor enabled the number of structural units of each constituent and the sequence of crystalline 2D layers to be precisely controlled. The stacking of the 2D layers, their structures, and the segregation of the elements between them were determined using X-ray diffraction and electron microscopy techniques, with the observed sequence of the 2D layers consistent with the targeted intergrowth. This ability to prepare targeted heterostructures is critical, since the number of possible configurations in the final compound increases rapidly as the number of constituents increases, from almost 60 000 with two constituents to over 130 million with three constituents and to over 35 billion with four constituents for 20 or fewer distinct layers in the unit cell. This general route for synthesizing specific multiple component heterostructures will accelerate the feedback loop in this growing research area, permitting theorists to assume specific structures in the search for enhanced properties and providing experimentalists with crystallographically aligned samples to test these predictions.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c6nr03406c</identifier><identifier>PMID: 27363315</identifier><language>eng</language><publisher>England</publisher><subject>Constituents ; Heterostructures ; Nanostructure ; Precursors ; Searching ; Segregations ; Self assembly ; Two dimensional</subject><ispartof>Nanoscale, 2016-07, Vol.8 (28), p.13646-13651</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c235t-6777ff2c27e345d8bea1b4648129b92b08e403745900b0847d8a275d0d72e8833</citedby><cites>FETCH-LOGICAL-c235t-6777ff2c27e345d8bea1b4648129b92b08e403745900b0847d8a275d0d72e8833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27363315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merrill, Devin R</creatorcontrib><creatorcontrib>Sutherland, Duncan R</creatorcontrib><creatorcontrib>Ditto, Jeffrey J</creatorcontrib><creatorcontrib>Moore, Daniel B</creatorcontrib><creatorcontrib>Falmbigl, Matthias</creatorcontrib><creatorcontrib>Medlin, Douglas L</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><title>The synthesis of [(PbSe)1+δ]m(TiSe2)n[(SnSe2)1+γ]m(TiSe2)n heterostructures with designed nanoarchitectures by self assembly of amorphous precursors</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Targeted heterostructures containing intergrown two dimensional (2D) layers of 3 different constituent layers, SnSe2, PbSe and TiSe2, were prepared by controlling the composition and sequence of elemental bilayers within a designed precursor. Varying the structure of the precursor enabled the number of structural units of each constituent and the sequence of crystalline 2D layers to be precisely controlled. The stacking of the 2D layers, their structures, and the segregation of the elements between them were determined using X-ray diffraction and electron microscopy techniques, with the observed sequence of the 2D layers consistent with the targeted intergrowth. This ability to prepare targeted heterostructures is critical, since the number of possible configurations in the final compound increases rapidly as the number of constituents increases, from almost 60 000 with two constituents to over 130 million with three constituents and to over 35 billion with four constituents for 20 or fewer distinct layers in the unit cell. This general route for synthesizing specific multiple component heterostructures will accelerate the feedback loop in this growing research area, permitting theorists to assume specific structures in the search for enhanced properties and providing experimentalists with crystallographically aligned samples to test these predictions.</description><subject>Constituents</subject><subject>Heterostructures</subject><subject>Nanostructure</subject><subject>Precursors</subject><subject>Searching</subject><subject>Segregations</subject><subject>Self assembly</subject><subject>Two dimensional</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUtOwzAQhi0E4r3hAMjLAio4tmMnS1TxkhAgWlYIRY4zIUF5FE8i1ItwETgHZ8KFAltW8_r0z2h-QnYCdhgwER9Z1TgmJFN2iaxzJtlQCM2Xf3Ml18gG4hNjKhZKrJI1rn0UQbhOXicFUJw1XQFYIm1zej-4ScewFxx8vD_Ug0k5Br7X3A_GzTzx3be_Li2gA9di53rb9Q6QvpRdQTMv9dhARhvTtMbZouxgMU9nFKHKqUGEOq1m84Wmbt20aHukUwe2d9g63CIruakQthdxk9ydnkxG58PL67OL0fHl0HIRdkOltc5zbrkGIcMsSsEEqVQyCnicxjxlEUgmtAxjxnwhdRYZrsOMZZpDFAmxSQbfulPXPveAXVKXaKGqTAP-oiSIeBgqLmP-D5TJKNTeCI_uf6PWPwcd5MnUlbVxsyRgydyyZKSubr8sG3l4d6HbpzVkv-iPR-ITU0OSgw</recordid><startdate>20160714</startdate><enddate>20160714</enddate><creator>Merrill, Devin R</creator><creator>Sutherland, Duncan R</creator><creator>Ditto, Jeffrey J</creator><creator>Moore, Daniel B</creator><creator>Falmbigl, Matthias</creator><creator>Medlin, Douglas L</creator><creator>Johnson, David C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160714</creationdate><title>The synthesis of [(PbSe)1+δ]m(TiSe2)n[(SnSe2)1+γ]m(TiSe2)n heterostructures with designed nanoarchitectures by self assembly of amorphous precursors</title><author>Merrill, Devin R ; Sutherland, Duncan R ; Ditto, Jeffrey J ; Moore, Daniel B ; Falmbigl, Matthias ; Medlin, Douglas L ; Johnson, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-6777ff2c27e345d8bea1b4648129b92b08e403745900b0847d8a275d0d72e8833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constituents</topic><topic>Heterostructures</topic><topic>Nanostructure</topic><topic>Precursors</topic><topic>Searching</topic><topic>Segregations</topic><topic>Self assembly</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merrill, Devin R</creatorcontrib><creatorcontrib>Sutherland, Duncan R</creatorcontrib><creatorcontrib>Ditto, Jeffrey J</creatorcontrib><creatorcontrib>Moore, Daniel B</creatorcontrib><creatorcontrib>Falmbigl, Matthias</creatorcontrib><creatorcontrib>Medlin, Douglas L</creatorcontrib><creatorcontrib>Johnson, David C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merrill, Devin R</au><au>Sutherland, Duncan R</au><au>Ditto, Jeffrey J</au><au>Moore, Daniel B</au><au>Falmbigl, Matthias</au><au>Medlin, Douglas L</au><au>Johnson, David C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The synthesis of [(PbSe)1+δ]m(TiSe2)n[(SnSe2)1+γ]m(TiSe2)n heterostructures with designed nanoarchitectures by self assembly of amorphous precursors</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-07-14</date><risdate>2016</risdate><volume>8</volume><issue>28</issue><spage>13646</spage><epage>13651</epage><pages>13646-13651</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Targeted heterostructures containing intergrown two dimensional (2D) layers of 3 different constituent layers, SnSe2, PbSe and TiSe2, were prepared by controlling the composition and sequence of elemental bilayers within a designed precursor. Varying the structure of the precursor enabled the number of structural units of each constituent and the sequence of crystalline 2D layers to be precisely controlled. The stacking of the 2D layers, their structures, and the segregation of the elements between them were determined using X-ray diffraction and electron microscopy techniques, with the observed sequence of the 2D layers consistent with the targeted intergrowth. This ability to prepare targeted heterostructures is critical, since the number of possible configurations in the final compound increases rapidly as the number of constituents increases, from almost 60 000 with two constituents to over 130 million with three constituents and to over 35 billion with four constituents for 20 or fewer distinct layers in the unit cell. This general route for synthesizing specific multiple component heterostructures will accelerate the feedback loop in this growing research area, permitting theorists to assume specific structures in the search for enhanced properties and providing experimentalists with crystallographically aligned samples to test these predictions.</abstract><cop>England</cop><pmid>27363315</pmid><doi>10.1039/c6nr03406c</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2016-07, Vol.8 (28), p.13646-13651
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1825562492
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Constituents
Heterostructures
Nanostructure
Precursors
Searching
Segregations
Self assembly
Two dimensional
title The synthesis of [(PbSe)1+δ]m(TiSe2)n[(SnSe2)1+γ]m(TiSe2)n heterostructures with designed nanoarchitectures by self assembly of amorphous precursors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20synthesis%20of%20%5B(PbSe)1+%CE%B4%5Dm(TiSe2)n%5B(SnSe2)1+%CE%B3%5Dm(TiSe2)n%20heterostructures%20with%20designed%20nanoarchitectures%20by%20self%20assembly%20of%20amorphous%20precursors&rft.jtitle=Nanoscale&rft.au=Merrill,%20Devin%20R&rft.date=2016-07-14&rft.volume=8&rft.issue=28&rft.spage=13646&rft.epage=13651&rft.pages=13646-13651&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c6nr03406c&rft_dat=%3Cproquest_cross%3E1804857034%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c235t-6777ff2c27e345d8bea1b4648129b92b08e403745900b0847d8a275d0d72e8833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1804857034&rft_id=info:pmid/27363315&rfr_iscdi=true