Loading…
Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator
Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample siz...
Saved in:
Published in: | Quality and reliability engineering international 2016-07, Vol.32 (5), p.1731-1740 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3 |
---|---|
cites | |
container_end_page | 1740 |
container_issue | 5 |
container_start_page | 1731 |
container_title | Quality and reliability engineering international |
container_volume | 32 |
creator | Adeoti, Olatunde A. Olaomi, John O. Adekeye, Kayode S. |
description | Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the
X¯D control chart, using the Downton statistic, performed better than Shewhart
X¯ chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart
X¯ chart that is normally distributed. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/qre.1909 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825564709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825564709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3</originalsourceid><addsrcrecordid>eNpd0E9LwzAYBvAgCs4p-BECHvTSmTRt0hy1zils8w_KjiFNU-3ski3JmPv2ZigKnp7Lj5fnfQA4xWiAEUovV04PMEd8D_Qw4jzBlBT7oIdYViQFwuwQHHk_RyhiXvTApLQmONvB8l26AMftog0eNtbBiTVtsK41b_DRWaW9hxMtDbyWXtfQGnhjNyZYc-7h0Id2ISM-BgeN7Lw--ck-eL0dvpR3yfhhdF9ejRNFWMaTutAsbTRuECWsYqomFalSjJqccZ5lKSFKElazmlKuNFFVk3HUsLRSiDKpFemDi--7S2dXa-2DWLRe6a6TRtu1F7hI85xmDPFIz_7RuV07E9tFhQhhNMKokm-1aTu9FUsX_3FbgZHYjSriqGI3qnh6Hu7yz7c-6M9fL92HoIywXMymI0HwlJECj8SMfAGPeHlz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803376564</pqid></control><display><type>article</type><title>Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Adeoti, Olatunde A. ; Olaomi, John O. ; Adekeye, Kayode S.</creator><creatorcontrib>Adeoti, Olatunde A. ; Olaomi, John O. ; Adekeye, Kayode S.</creatorcontrib><description>Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the
X¯D control chart, using the Downton statistic, performed better than Shewhart
X¯ chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart
X¯ chart that is normally distributed. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.1909</identifier><identifier>CODEN: QREIE5</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Average run length ; Constants ; Control charts ; Control limits ; Downton's estimator ; Estimators ; Monitoring ; Monitors ; process mean ; Statistical process control ; Statistics ; Tables (data)</subject><ispartof>Quality and reliability engineering international, 2016-07, Vol.32 (5), p.1731-1740</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adeoti, Olatunde A.</creatorcontrib><creatorcontrib>Olaomi, John O.</creatorcontrib><creatorcontrib>Adekeye, Kayode S.</creatorcontrib><title>Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator</title><title>Quality and reliability engineering international</title><addtitle>Qual. Reliab. Engng. Int</addtitle><description>Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the
X¯D control chart, using the Downton statistic, performed better than Shewhart
X¯ chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart
X¯ chart that is normally distributed. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Average run length</subject><subject>Constants</subject><subject>Control charts</subject><subject>Control limits</subject><subject>Downton's estimator</subject><subject>Estimators</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>process mean</subject><subject>Statistical process control</subject><subject>Statistics</subject><subject>Tables (data)</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpd0E9LwzAYBvAgCs4p-BECHvTSmTRt0hy1zils8w_KjiFNU-3ski3JmPv2ZigKnp7Lj5fnfQA4xWiAEUovV04PMEd8D_Qw4jzBlBT7oIdYViQFwuwQHHk_RyhiXvTApLQmONvB8l26AMftog0eNtbBiTVtsK41b_DRWaW9hxMtDbyWXtfQGnhjNyZYc-7h0Id2ISM-BgeN7Lw--ck-eL0dvpR3yfhhdF9ejRNFWMaTutAsbTRuECWsYqomFalSjJqccZ5lKSFKElazmlKuNFFVk3HUsLRSiDKpFemDi--7S2dXa-2DWLRe6a6TRtu1F7hI85xmDPFIz_7RuV07E9tFhQhhNMKokm-1aTu9FUsX_3FbgZHYjSriqGI3qnh6Hu7yz7c-6M9fL92HoIywXMymI0HwlJECj8SMfAGPeHlz</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Adeoti, Olatunde A.</creator><creator>Olaomi, John O.</creator><creator>Adekeye, Kayode S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201607</creationdate><title>Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator</title><author>Adeoti, Olatunde A. ; Olaomi, John O. ; Adekeye, Kayode S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Average run length</topic><topic>Constants</topic><topic>Control charts</topic><topic>Control limits</topic><topic>Downton's estimator</topic><topic>Estimators</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>process mean</topic><topic>Statistical process control</topic><topic>Statistics</topic><topic>Tables (data)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adeoti, Olatunde A.</creatorcontrib><creatorcontrib>Olaomi, John O.</creatorcontrib><creatorcontrib>Adekeye, Kayode S.</creatorcontrib><collection>Istex</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adeoti, Olatunde A.</au><au>Olaomi, John O.</au><au>Adekeye, Kayode S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator</atitle><jtitle>Quality and reliability engineering international</jtitle><addtitle>Qual. Reliab. Engng. Int</addtitle><date>2016-07</date><risdate>2016</risdate><volume>32</volume><issue>5</issue><spage>1731</spage><epage>1740</epage><pages>1731-1740</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><coden>QREIE5</coden><abstract>Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the
X¯D control chart, using the Downton statistic, performed better than Shewhart
X¯ chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart
X¯ chart that is normally distributed. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/qre.1909</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2016-07, Vol.32 (5), p.1731-1740 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_miscellaneous_1825564709 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Average run length Constants Control charts Control limits Downton's estimator Estimators Monitoring Monitors process mean Statistical process control Statistics Tables (data) |
title | Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20Chart%20Limits%20for%20Monitoring%20Process%20Mean%20Based%20on%20Downton's%20Estimator&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Adeoti,%20Olatunde%20A.&rft.date=2016-07&rft.volume=32&rft.issue=5&rft.spage=1731&rft.epage=1740&rft.pages=1731-1740&rft.issn=0748-8017&rft.eissn=1099-1638&rft.coden=QREIE5&rft_id=info:doi/10.1002/qre.1909&rft_dat=%3Cproquest_wiley%3E1825564709%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1803376564&rft_id=info:pmid/&rfr_iscdi=true |