Loading…

Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator

Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample siz...

Full description

Saved in:
Bibliographic Details
Published in:Quality and reliability engineering international 2016-07, Vol.32 (5), p.1731-1740
Main Authors: Adeoti, Olatunde A., Olaomi, John O., Adekeye, Kayode S.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3
cites
container_end_page 1740
container_issue 5
container_start_page 1731
container_title Quality and reliability engineering international
container_volume 32
creator Adeoti, Olatunde A.
Olaomi, John O.
Adekeye, Kayode S.
description Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the X¯D control chart, using the Downton statistic, performed better than Shewhart X¯ chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart X¯ chart that is normally distributed. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/qre.1909
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1825564709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825564709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3</originalsourceid><addsrcrecordid>eNpd0E9LwzAYBvAgCs4p-BECHvTSmTRt0hy1zils8w_KjiFNU-3ski3JmPv2ZigKnp7Lj5fnfQA4xWiAEUovV04PMEd8D_Qw4jzBlBT7oIdYViQFwuwQHHk_RyhiXvTApLQmONvB8l26AMftog0eNtbBiTVtsK41b_DRWaW9hxMtDbyWXtfQGnhjNyZYc-7h0Id2ISM-BgeN7Lw--ck-eL0dvpR3yfhhdF9ejRNFWMaTutAsbTRuECWsYqomFalSjJqccZ5lKSFKElazmlKuNFFVk3HUsLRSiDKpFemDi--7S2dXa-2DWLRe6a6TRtu1F7hI85xmDPFIz_7RuV07E9tFhQhhNMKokm-1aTu9FUsX_3FbgZHYjSriqGI3qnh6Hu7yz7c-6M9fL92HoIywXMymI0HwlJECj8SMfAGPeHlz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803376564</pqid></control><display><type>article</type><title>Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Adeoti, Olatunde A. ; Olaomi, John O. ; Adekeye, Kayode S.</creator><creatorcontrib>Adeoti, Olatunde A. ; Olaomi, John O. ; Adekeye, Kayode S.</creatorcontrib><description>Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the X¯D control chart, using the Downton statistic, performed better than Shewhart X¯ chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart X¯ chart that is normally distributed. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.1909</identifier><identifier>CODEN: QREIE5</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Average run length ; Constants ; Control charts ; Control limits ; Downton's estimator ; Estimators ; Monitoring ; Monitors ; process mean ; Statistical process control ; Statistics ; Tables (data)</subject><ispartof>Quality and reliability engineering international, 2016-07, Vol.32 (5), p.1731-1740</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adeoti, Olatunde A.</creatorcontrib><creatorcontrib>Olaomi, John O.</creatorcontrib><creatorcontrib>Adekeye, Kayode S.</creatorcontrib><title>Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator</title><title>Quality and reliability engineering international</title><addtitle>Qual. Reliab. Engng. Int</addtitle><description>Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the X¯D control chart, using the Downton statistic, performed better than Shewhart X¯ chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart X¯ chart that is normally distributed. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Average run length</subject><subject>Constants</subject><subject>Control charts</subject><subject>Control limits</subject><subject>Downton's estimator</subject><subject>Estimators</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>process mean</subject><subject>Statistical process control</subject><subject>Statistics</subject><subject>Tables (data)</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpd0E9LwzAYBvAgCs4p-BECHvTSmTRt0hy1zils8w_KjiFNU-3ski3JmPv2ZigKnp7Lj5fnfQA4xWiAEUovV04PMEd8D_Qw4jzBlBT7oIdYViQFwuwQHHk_RyhiXvTApLQmONvB8l26AMftog0eNtbBiTVtsK41b_DRWaW9hxMtDbyWXtfQGnhjNyZYc-7h0Id2ISM-BgeN7Lw--ck-eL0dvpR3yfhhdF9ejRNFWMaTutAsbTRuECWsYqomFalSjJqccZ5lKSFKElazmlKuNFFVk3HUsLRSiDKpFemDi--7S2dXa-2DWLRe6a6TRtu1F7hI85xmDPFIz_7RuV07E9tFhQhhNMKokm-1aTu9FUsX_3FbgZHYjSriqGI3qnh6Hu7yz7c-6M9fL92HoIywXMymI0HwlJECj8SMfAGPeHlz</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Adeoti, Olatunde A.</creator><creator>Olaomi, John O.</creator><creator>Adekeye, Kayode S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201607</creationdate><title>Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator</title><author>Adeoti, Olatunde A. ; Olaomi, John O. ; Adekeye, Kayode S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Average run length</topic><topic>Constants</topic><topic>Control charts</topic><topic>Control limits</topic><topic>Downton's estimator</topic><topic>Estimators</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>process mean</topic><topic>Statistical process control</topic><topic>Statistics</topic><topic>Tables (data)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adeoti, Olatunde A.</creatorcontrib><creatorcontrib>Olaomi, John O.</creatorcontrib><creatorcontrib>Adekeye, Kayode S.</creatorcontrib><collection>Istex</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adeoti, Olatunde A.</au><au>Olaomi, John O.</au><au>Adekeye, Kayode S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator</atitle><jtitle>Quality and reliability engineering international</jtitle><addtitle>Qual. Reliab. Engng. Int</addtitle><date>2016-07</date><risdate>2016</risdate><volume>32</volume><issue>5</issue><spage>1731</spage><epage>1740</epage><pages>1731-1740</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><coden>QREIE5</coden><abstract>Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the X¯D control chart, using the Downton statistic, performed better than Shewhart X¯ chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart X¯ chart that is normally distributed. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/qre.1909</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2016-07, Vol.32 (5), p.1731-1740
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_miscellaneous_1825564709
source Wiley-Blackwell Read & Publish Collection
subjects Average run length
Constants
Control charts
Control limits
Downton's estimator
Estimators
Monitoring
Monitors
process mean
Statistical process control
Statistics
Tables (data)
title Control Chart Limits for Monitoring Process Mean Based on Downton's Estimator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20Chart%20Limits%20for%20Monitoring%20Process%20Mean%20Based%20on%20Downton's%20Estimator&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Adeoti,%20Olatunde%20A.&rft.date=2016-07&rft.volume=32&rft.issue=5&rft.spage=1731&rft.epage=1740&rft.pages=1731-1740&rft.issn=0748-8017&rft.eissn=1099-1638&rft.coden=QREIE5&rft_id=info:doi/10.1002/qre.1909&rft_dat=%3Cproquest_wiley%3E1825564709%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3749-d8e72fe1f0637b7cd3b3b210f579944233ca37d7d669ce3cbf490f72bc067aec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1803376564&rft_id=info:pmid/&rfr_iscdi=true