Loading…

Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets

Knowledge of left atrial (LA) anatomy is important for atrial fibrillation ablation guidance, fibrosis quantification and biophysical modelling. Segmentation of the LA from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images is a complex problem. This manuscript presents a benchmark...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2015-07, Vol.34 (7), p.1460-1473
Main Authors: Tobon-Gomez, Catalina, Geers, Arjan J., Peters, Jochen, Weese, Jurgen, Pinto, Karen, Karim, Rashed, Ammar, Mohammed, Daoudi, Abdelaziz, Margeta, Jan, Sandoval, Zulma, Stender, Birgit, Yefeng Zheng, Zuluaga, Maria A., Betancur, Julian, Ayache, Nicholas, Amine Chikh, Mohammed, Dillenseger, Jean-Louis, Kelm, B. Michael, Mahmoudi, Said, Ourselin, Sebastien, Schlaefer, Alexander, Schaeffter, Tobias, Razavi, Reza, Rhode, Kawal S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-62ff6136ab2d978aadfdee1eb9a27bd767215df28817f6b92d1420eff83941d33
cites cdi_FETCH-LOGICAL-c536t-62ff6136ab2d978aadfdee1eb9a27bd767215df28817f6b92d1420eff83941d33
container_end_page 1473
container_issue 7
container_start_page 1460
container_title IEEE transactions on medical imaging
container_volume 34
creator Tobon-Gomez, Catalina
Geers, Arjan J.
Peters, Jochen
Weese, Jurgen
Pinto, Karen
Karim, Rashed
Ammar, Mohammed
Daoudi, Abdelaziz
Margeta, Jan
Sandoval, Zulma
Stender, Birgit
Yefeng Zheng
Zuluaga, Maria A.
Betancur, Julian
Ayache, Nicholas
Amine Chikh, Mohammed
Dillenseger, Jean-Louis
Kelm, B. Michael
Mahmoudi, Said
Ourselin, Sebastien
Schlaefer, Alexander
Schaeffter, Tobias
Razavi, Reza
Rhode, Kawal S.
description Knowledge of left atrial (LA) anatomy is important for atrial fibrillation ablation guidance, fibrosis quantification and biophysical modelling. Segmentation of the LA from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images is a complex problem. This manuscript presents a benchmark to evaluate algorithms that address LA segmentation. The datasets, ground truth and evaluation code have been made publicly available through the http://www.cardiacatlas.org website. This manuscript also reports the results of the Left Atrial Segmentation Challenge (LASC) carried out at the STACOM'13 workshop, in conjunction with MICCAI'13. Thirty CT and 30 MRI datasets were provided to participants for segmentation. Each participant segmented the LA including a short part of the LA appendage trunk and proximal sections of the pulmonary veins (PVs). We present results for nine algorithms for CT and eight algorithms for MRI. Results showed that methodologies combining statistical models with region growing approaches were the most appropriate to handle the proposed task. The ground truth and automatic segmentations were standardised to reduce the influence of inconsistently defined regions (e.g., mitral plane, PVs end points, LA appendage). This standardisation framework, which is a contribution of this work, can be used to label and further analyse anatomical regions of the LA. By performing the standardisation directly on the left atrial surface, we can process multiple input data, including meshes exported from different electroanatomical mapping systems.
doi_str_mv 10.1109/TMI.2015.2398818
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826611546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7029623</ieee_id><sourcerecordid>3735795451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-62ff6136ab2d978aadfdee1eb9a27bd767215df28817f6b92d1420eff83941d33</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi0EoqFwR0JClrjAYVPPeP11DCltI6WqBEHiZnmzdrJlP4q9i8S_Z1dJc-BCTyN5nnml1w8hb4HNAZi52Nyu5shAzJEbrUE_IzMQQmco8h_PyYyh0hljEs_Iq5TuGYNcMPOSnKGQUvHczMjdZ99u942LP2noIl3Uuy5W_b5J9JvfNb7tq3ZH-72nax96uuhjNTT0KnYN5Zd0uaGuLent1xW9dL1Lvk-vyYvg6uTfHOc5-X71ZbO8ydZ316vlYp1tBZd9JjEECVy6AkujtHNlKL0HXxiHqiiVVAiiDDiWUkEWBkvIkfkQNDc5lJyfk0-H3L2r7UOsxgZ_bOcqe7NY2-mNAUommfoNI_vxwD7E7tfgU2-bKm19XbvWd0OyoFFKAJHL_6MKtEGjBT4BZQaUknxK_fAPet8NsR3_x4I0-SglV1MgO1Db2KUUfTj1AmYn3XbUbSfd9qh7PHl_DB6Kxpeng0e_I_DuAFTe-9NaMTQSOf8Lo8mptw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694450472</pqid></control><display><type>article</type><title>Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tobon-Gomez, Catalina ; Geers, Arjan J. ; Peters, Jochen ; Weese, Jurgen ; Pinto, Karen ; Karim, Rashed ; Ammar, Mohammed ; Daoudi, Abdelaziz ; Margeta, Jan ; Sandoval, Zulma ; Stender, Birgit ; Yefeng Zheng ; Zuluaga, Maria A. ; Betancur, Julian ; Ayache, Nicholas ; Amine Chikh, Mohammed ; Dillenseger, Jean-Louis ; Kelm, B. Michael ; Mahmoudi, Said ; Ourselin, Sebastien ; Schlaefer, Alexander ; Schaeffter, Tobias ; Razavi, Reza ; Rhode, Kawal S.</creator><creatorcontrib>Tobon-Gomez, Catalina ; Geers, Arjan J. ; Peters, Jochen ; Weese, Jurgen ; Pinto, Karen ; Karim, Rashed ; Ammar, Mohammed ; Daoudi, Abdelaziz ; Margeta, Jan ; Sandoval, Zulma ; Stender, Birgit ; Yefeng Zheng ; Zuluaga, Maria A. ; Betancur, Julian ; Ayache, Nicholas ; Amine Chikh, Mohammed ; Dillenseger, Jean-Louis ; Kelm, B. Michael ; Mahmoudi, Said ; Ourselin, Sebastien ; Schlaefer, Alexander ; Schaeffter, Tobias ; Razavi, Reza ; Rhode, Kawal S.</creatorcontrib><description>Knowledge of left atrial (LA) anatomy is important for atrial fibrillation ablation guidance, fibrosis quantification and biophysical modelling. Segmentation of the LA from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images is a complex problem. This manuscript presents a benchmark to evaluate algorithms that address LA segmentation. The datasets, ground truth and evaluation code have been made publicly available through the http://www.cardiacatlas.org website. This manuscript also reports the results of the Left Atrial Segmentation Challenge (LASC) carried out at the STACOM'13 workshop, in conjunction with MICCAI'13. Thirty CT and 30 MRI datasets were provided to participants for segmentation. Each participant segmented the LA including a short part of the LA appendage trunk and proximal sections of the pulmonary veins (PVs). We present results for nine algorithms for CT and eight algorithms for MRI. Results showed that methodologies combining statistical models with region growing approaches were the most appropriate to handle the proposed task. The ground truth and automatic segmentations were standardised to reduce the influence of inconsistently defined regions (e.g., mitral plane, PVs end points, LA appendage). This standardisation framework, which is a contribution of this work, can be used to label and further analyse anatomical regions of the LA. By performing the standardisation directly on the left atrial surface, we can process multiple input data, including meshes exported from different electroanatomical mapping systems.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2015.2398818</identifier><identifier>PMID: 25667349</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Appendages ; Benchmark testing ; Benchmarking ; Bioengineering ; cardiovascular disease ; Computed tomography ; Computer Science ; Educational institutions ; Engineering Sciences ; Ground truth ; Image Processing ; Image segmentation ; left atrium ; Life Sciences ; Magnetic resonance imaging ; Mathematical models ; Measurement ; Medical Imaging ; NMR ; Nuclear magnetic resonance ; Segmentation ; Shape ; Signal and Image processing</subject><ispartof>IEEE transactions on medical imaging, 2015-07, Vol.34 (7), p.1460-1473</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-62ff6136ab2d978aadfdee1eb9a27bd767215df28817f6b92d1420eff83941d33</citedby><cites>FETCH-LOGICAL-c536t-62ff6136ab2d978aadfdee1eb9a27bd767215df28817f6b92d1420eff83941d33</cites><orcidid>0000-0002-1147-766X ; 0000-0003-3305-127X ; 0000-0001-8840-3944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7029623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25667349$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-01260607$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tobon-Gomez, Catalina</creatorcontrib><creatorcontrib>Geers, Arjan J.</creatorcontrib><creatorcontrib>Peters, Jochen</creatorcontrib><creatorcontrib>Weese, Jurgen</creatorcontrib><creatorcontrib>Pinto, Karen</creatorcontrib><creatorcontrib>Karim, Rashed</creatorcontrib><creatorcontrib>Ammar, Mohammed</creatorcontrib><creatorcontrib>Daoudi, Abdelaziz</creatorcontrib><creatorcontrib>Margeta, Jan</creatorcontrib><creatorcontrib>Sandoval, Zulma</creatorcontrib><creatorcontrib>Stender, Birgit</creatorcontrib><creatorcontrib>Yefeng Zheng</creatorcontrib><creatorcontrib>Zuluaga, Maria A.</creatorcontrib><creatorcontrib>Betancur, Julian</creatorcontrib><creatorcontrib>Ayache, Nicholas</creatorcontrib><creatorcontrib>Amine Chikh, Mohammed</creatorcontrib><creatorcontrib>Dillenseger, Jean-Louis</creatorcontrib><creatorcontrib>Kelm, B. Michael</creatorcontrib><creatorcontrib>Mahmoudi, Said</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Schlaefer, Alexander</creatorcontrib><creatorcontrib>Schaeffter, Tobias</creatorcontrib><creatorcontrib>Razavi, Reza</creatorcontrib><creatorcontrib>Rhode, Kawal S.</creatorcontrib><title>Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Knowledge of left atrial (LA) anatomy is important for atrial fibrillation ablation guidance, fibrosis quantification and biophysical modelling. Segmentation of the LA from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images is a complex problem. This manuscript presents a benchmark to evaluate algorithms that address LA segmentation. The datasets, ground truth and evaluation code have been made publicly available through the http://www.cardiacatlas.org website. This manuscript also reports the results of the Left Atrial Segmentation Challenge (LASC) carried out at the STACOM'13 workshop, in conjunction with MICCAI'13. Thirty CT and 30 MRI datasets were provided to participants for segmentation. Each participant segmented the LA including a short part of the LA appendage trunk and proximal sections of the pulmonary veins (PVs). We present results for nine algorithms for CT and eight algorithms for MRI. Results showed that methodologies combining statistical models with region growing approaches were the most appropriate to handle the proposed task. The ground truth and automatic segmentations were standardised to reduce the influence of inconsistently defined regions (e.g., mitral plane, PVs end points, LA appendage). This standardisation framework, which is a contribution of this work, can be used to label and further analyse anatomical regions of the LA. By performing the standardisation directly on the left atrial surface, we can process multiple input data, including meshes exported from different electroanatomical mapping systems.</description><subject>Algorithms</subject><subject>Appendages</subject><subject>Benchmark testing</subject><subject>Benchmarking</subject><subject>Bioengineering</subject><subject>cardiovascular disease</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Educational institutions</subject><subject>Engineering Sciences</subject><subject>Ground truth</subject><subject>Image Processing</subject><subject>Image segmentation</subject><subject>left atrium</subject><subject>Life Sciences</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Medical Imaging</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Signal and Image processing</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi0EoqFwR0JClrjAYVPPeP11DCltI6WqBEHiZnmzdrJlP4q9i8S_Z1dJc-BCTyN5nnml1w8hb4HNAZi52Nyu5shAzJEbrUE_IzMQQmco8h_PyYyh0hljEs_Iq5TuGYNcMPOSnKGQUvHczMjdZ99u942LP2noIl3Uuy5W_b5J9JvfNb7tq3ZH-72nax96uuhjNTT0KnYN5Zd0uaGuLent1xW9dL1Lvk-vyYvg6uTfHOc5-X71ZbO8ydZ316vlYp1tBZd9JjEECVy6AkujtHNlKL0HXxiHqiiVVAiiDDiWUkEWBkvIkfkQNDc5lJyfk0-H3L2r7UOsxgZ_bOcqe7NY2-mNAUommfoNI_vxwD7E7tfgU2-bKm19XbvWd0OyoFFKAJHL_6MKtEGjBT4BZQaUknxK_fAPet8NsR3_x4I0-SglV1MgO1Db2KUUfTj1AmYn3XbUbSfd9qh7PHl_DB6Kxpeng0e_I_DuAFTe-9NaMTQSOf8Lo8mptw</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Tobon-Gomez, Catalina</creator><creator>Geers, Arjan J.</creator><creator>Peters, Jochen</creator><creator>Weese, Jurgen</creator><creator>Pinto, Karen</creator><creator>Karim, Rashed</creator><creator>Ammar, Mohammed</creator><creator>Daoudi, Abdelaziz</creator><creator>Margeta, Jan</creator><creator>Sandoval, Zulma</creator><creator>Stender, Birgit</creator><creator>Yefeng Zheng</creator><creator>Zuluaga, Maria A.</creator><creator>Betancur, Julian</creator><creator>Ayache, Nicholas</creator><creator>Amine Chikh, Mohammed</creator><creator>Dillenseger, Jean-Louis</creator><creator>Kelm, B. Michael</creator><creator>Mahmoudi, Said</creator><creator>Ourselin, Sebastien</creator><creator>Schlaefer, Alexander</creator><creator>Schaeffter, Tobias</creator><creator>Razavi, Reza</creator><creator>Rhode, Kawal S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1147-766X</orcidid><orcidid>https://orcid.org/0000-0003-3305-127X</orcidid><orcidid>https://orcid.org/0000-0001-8840-3944</orcidid></search><sort><creationdate>201507</creationdate><title>Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets</title><author>Tobon-Gomez, Catalina ; Geers, Arjan J. ; Peters, Jochen ; Weese, Jurgen ; Pinto, Karen ; Karim, Rashed ; Ammar, Mohammed ; Daoudi, Abdelaziz ; Margeta, Jan ; Sandoval, Zulma ; Stender, Birgit ; Yefeng Zheng ; Zuluaga, Maria A. ; Betancur, Julian ; Ayache, Nicholas ; Amine Chikh, Mohammed ; Dillenseger, Jean-Louis ; Kelm, B. Michael ; Mahmoudi, Said ; Ourselin, Sebastien ; Schlaefer, Alexander ; Schaeffter, Tobias ; Razavi, Reza ; Rhode, Kawal S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-62ff6136ab2d978aadfdee1eb9a27bd767215df28817f6b92d1420eff83941d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Appendages</topic><topic>Benchmark testing</topic><topic>Benchmarking</topic><topic>Bioengineering</topic><topic>cardiovascular disease</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Educational institutions</topic><topic>Engineering Sciences</topic><topic>Ground truth</topic><topic>Image Processing</topic><topic>Image segmentation</topic><topic>left atrium</topic><topic>Life Sciences</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Medical Imaging</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Signal and Image processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tobon-Gomez, Catalina</creatorcontrib><creatorcontrib>Geers, Arjan J.</creatorcontrib><creatorcontrib>Peters, Jochen</creatorcontrib><creatorcontrib>Weese, Jurgen</creatorcontrib><creatorcontrib>Pinto, Karen</creatorcontrib><creatorcontrib>Karim, Rashed</creatorcontrib><creatorcontrib>Ammar, Mohammed</creatorcontrib><creatorcontrib>Daoudi, Abdelaziz</creatorcontrib><creatorcontrib>Margeta, Jan</creatorcontrib><creatorcontrib>Sandoval, Zulma</creatorcontrib><creatorcontrib>Stender, Birgit</creatorcontrib><creatorcontrib>Yefeng Zheng</creatorcontrib><creatorcontrib>Zuluaga, Maria A.</creatorcontrib><creatorcontrib>Betancur, Julian</creatorcontrib><creatorcontrib>Ayache, Nicholas</creatorcontrib><creatorcontrib>Amine Chikh, Mohammed</creatorcontrib><creatorcontrib>Dillenseger, Jean-Louis</creatorcontrib><creatorcontrib>Kelm, B. Michael</creatorcontrib><creatorcontrib>Mahmoudi, Said</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Schlaefer, Alexander</creatorcontrib><creatorcontrib>Schaeffter, Tobias</creatorcontrib><creatorcontrib>Razavi, Reza</creatorcontrib><creatorcontrib>Rhode, Kawal S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tobon-Gomez, Catalina</au><au>Geers, Arjan J.</au><au>Peters, Jochen</au><au>Weese, Jurgen</au><au>Pinto, Karen</au><au>Karim, Rashed</au><au>Ammar, Mohammed</au><au>Daoudi, Abdelaziz</au><au>Margeta, Jan</au><au>Sandoval, Zulma</au><au>Stender, Birgit</au><au>Yefeng Zheng</au><au>Zuluaga, Maria A.</au><au>Betancur, Julian</au><au>Ayache, Nicholas</au><au>Amine Chikh, Mohammed</au><au>Dillenseger, Jean-Louis</au><au>Kelm, B. Michael</au><au>Mahmoudi, Said</au><au>Ourselin, Sebastien</au><au>Schlaefer, Alexander</au><au>Schaeffter, Tobias</au><au>Razavi, Reza</au><au>Rhode, Kawal S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2015-07</date><risdate>2015</risdate><volume>34</volume><issue>7</issue><spage>1460</spage><epage>1473</epage><pages>1460-1473</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Knowledge of left atrial (LA) anatomy is important for atrial fibrillation ablation guidance, fibrosis quantification and biophysical modelling. Segmentation of the LA from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images is a complex problem. This manuscript presents a benchmark to evaluate algorithms that address LA segmentation. The datasets, ground truth and evaluation code have been made publicly available through the http://www.cardiacatlas.org website. This manuscript also reports the results of the Left Atrial Segmentation Challenge (LASC) carried out at the STACOM'13 workshop, in conjunction with MICCAI'13. Thirty CT and 30 MRI datasets were provided to participants for segmentation. Each participant segmented the LA including a short part of the LA appendage trunk and proximal sections of the pulmonary veins (PVs). We present results for nine algorithms for CT and eight algorithms for MRI. Results showed that methodologies combining statistical models with region growing approaches were the most appropriate to handle the proposed task. The ground truth and automatic segmentations were standardised to reduce the influence of inconsistently defined regions (e.g., mitral plane, PVs end points, LA appendage). This standardisation framework, which is a contribution of this work, can be used to label and further analyse anatomical regions of the LA. By performing the standardisation directly on the left atrial surface, we can process multiple input data, including meshes exported from different electroanatomical mapping systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25667349</pmid><doi>10.1109/TMI.2015.2398818</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1147-766X</orcidid><orcidid>https://orcid.org/0000-0003-3305-127X</orcidid><orcidid>https://orcid.org/0000-0001-8840-3944</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2015-07, Vol.34 (7), p.1460-1473
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_1826611546
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Appendages
Benchmark testing
Benchmarking
Bioengineering
cardiovascular disease
Computed tomography
Computer Science
Educational institutions
Engineering Sciences
Ground truth
Image Processing
Image segmentation
left atrium
Life Sciences
Magnetic resonance imaging
Mathematical models
Measurement
Medical Imaging
NMR
Nuclear magnetic resonance
Segmentation
Shape
Signal and Image processing
title Benchmark for Algorithms Segmenting the Left Atrium From 3D CT and MRI Datasets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20for%20Algorithms%20Segmenting%20the%20Left%20Atrium%20From%203D%20CT%20and%20MRI%20Datasets&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Tobon-Gomez,%20Catalina&rft.date=2015-07&rft.volume=34&rft.issue=7&rft.spage=1460&rft.epage=1473&rft.pages=1460-1473&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2015.2398818&rft_dat=%3Cproquest_hal_p%3E3735795451%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-62ff6136ab2d978aadfdee1eb9a27bd767215df28817f6b92d1420eff83941d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1694450472&rft_id=info:pmid/25667349&rft_ieee_id=7029623&rfr_iscdi=true