Loading…

IFPA Senior Award Lecture: Mammalian fetal membranes

Abstract Background Fetal membrane development varies greatly across mammals with significant implications for models of human placentation. Method Therefore the major patterns of fetal membrane development are reviewed with special focus on functions of the inverted yolk sac in murine rodents. Find...

Full description

Saved in:
Bibliographic Details
Published in:Placenta (Eastbourne) 2016-12, Vol.48, p.S21-S30
Main Author: Carter, A.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-7809d3bfafb5c6001ad5914a6b4a562b7ba16c3a569dd723ac1e034f017425da3
cites cdi_FETCH-LOGICAL-c489t-7809d3bfafb5c6001ad5914a6b4a562b7ba16c3a569dd723ac1e034f017425da3
container_end_page S30
container_issue
container_start_page S21
container_title Placenta (Eastbourne)
container_volume 48
creator Carter, A.M
description Abstract Background Fetal membrane development varies greatly across mammals with significant implications for models of human placentation. Method Therefore the major patterns of fetal membrane development are reviewed with special focus on functions of the inverted yolk sac in murine rodents. Findings In most mammals, yolk sac and chorion form a choriovitelline placenta to support the early embryo, although this soon is supplanted by a chorioallantoic placenta. Human and haplorrhine primates follow a second pattern where precocious development of the extraembryonic mesoderm leads to formation of a secondary yolk sac within the exocoelom. In rodents there is an inverted visceral yolk sac that encloses the embryo and amnion and functions as an accessory to the chorioallantoic placenta through term. Where present, the inverted yolk sac performs a number of functions that in human are assumed by the syncytiotrophoblast of the chorioallantoic placenta. These include transfer of passive immunity, iron, cobalamin and lipoprotein; protein and lipid synthesis; haematopoiesis; and germ cell storage. Most mammals have a large, fluid-filled allantoic cavity. This is not the case in human and haplorrhine primates where there is an allantoic stalk but no allantoic cavity. Some rodents have a small allantoic cavity, but the mouse and other murine rodents do not. The evolution of amnion, yolk sac and allantois is explored. Conclusions Fetal membranes deserve close attention. In particular, the mouse model is incomplete unless the yolk sac is studied along with the chorioallantoic placenta.
doi_str_mv 10.1016/j.placenta.2015.10.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826633497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143400415300722</els_id><sourcerecordid>1826633497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-7809d3bfafb5c6001ad5914a6b4a562b7ba16c3a569dd723ac1e034f017425da3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhL1Q5cskyYzvOhgNiVVGotAikwtma2BPJSz4WOwH13-NoWw5cOM1o9M7X8wpxhbBFQPPmuD315HicaSsBq1zcAsonYoOVkqVCkE_FBlCrUgPoC_EipSMANBrlc3EhTYW7GpuN0Lc3X_fFHY9hisX-N0VfHNjNS-S3xWcaBuoDjUXHM_XFwEMbaeT0UjzrqE_86iFeiu83H75dfyoPXz7eXu8PpdO7Zi7rHTRetR11beUMAJKvGtRkWk2VkW3dEhqnct54X0tFDhmU7gBrLStP6lK8Ps89xennwmm2Q0iO-z4fMS3J4k4ao5Ru6iw1Z6mLU0qRO3uKYaB4bxHsSswe7SMxuxJb65lYbrx62LG0A_u_bY-IsuD9WcD501-Bo00u8OjYh5hJWT-F_-94988I14cxOOp_8D2n47TEMXO0aJO0YO9W31bbspcAtZTqD1FMkqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826633497</pqid></control><display><type>article</type><title>IFPA Senior Award Lecture: Mammalian fetal membranes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Carter, A.M</creator><creatorcontrib>Carter, A.M</creatorcontrib><description>Abstract Background Fetal membrane development varies greatly across mammals with significant implications for models of human placentation. Method Therefore the major patterns of fetal membrane development are reviewed with special focus on functions of the inverted yolk sac in murine rodents. Findings In most mammals, yolk sac and chorion form a choriovitelline placenta to support the early embryo, although this soon is supplanted by a chorioallantoic placenta. Human and haplorrhine primates follow a second pattern where precocious development of the extraembryonic mesoderm leads to formation of a secondary yolk sac within the exocoelom. In rodents there is an inverted visceral yolk sac that encloses the embryo and amnion and functions as an accessory to the chorioallantoic placenta through term. Where present, the inverted yolk sac performs a number of functions that in human are assumed by the syncytiotrophoblast of the chorioallantoic placenta. These include transfer of passive immunity, iron, cobalamin and lipoprotein; protein and lipid synthesis; haematopoiesis; and germ cell storage. Most mammals have a large, fluid-filled allantoic cavity. This is not the case in human and haplorrhine primates where there is an allantoic stalk but no allantoic cavity. Some rodents have a small allantoic cavity, but the mouse and other murine rodents do not. The evolution of amnion, yolk sac and allantois is explored. Conclusions Fetal membranes deserve close attention. In particular, the mouse model is incomplete unless the yolk sac is studied along with the chorioallantoic placenta.</description><identifier>ISSN: 0143-4004</identifier><identifier>ISSN: 1532-3102</identifier><identifier>EISSN: 1532-3102</identifier><identifier>DOI: 10.1016/j.placenta.2015.10.012</identifier><identifier>PMID: 26518719</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Allantois ; Amnion ; Animals ; Awards and Prizes ; Biological Evolution ; Exocoelom ; Extraembryonic Membranes - physiology ; Female ; Haematopoiesis ; Internal Medicine ; Mammals - physiology ; Obstetrics and Gynecology ; Passive immunity ; Placenta - physiology ; Placental transfer ; Placentation - physiology ; Pregnancy ; Yolk sac</subject><ispartof>Placenta (Eastbourne), 2016-12, Vol.48, p.S21-S30</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-7809d3bfafb5c6001ad5914a6b4a562b7ba16c3a569dd723ac1e034f017425da3</citedby><cites>FETCH-LOGICAL-c489t-7809d3bfafb5c6001ad5914a6b4a562b7ba16c3a569dd723ac1e034f017425da3</cites><orcidid>0000-0002-8359-2085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26518719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, A.M</creatorcontrib><title>IFPA Senior Award Lecture: Mammalian fetal membranes</title><title>Placenta (Eastbourne)</title><addtitle>Placenta</addtitle><description>Abstract Background Fetal membrane development varies greatly across mammals with significant implications for models of human placentation. Method Therefore the major patterns of fetal membrane development are reviewed with special focus on functions of the inverted yolk sac in murine rodents. Findings In most mammals, yolk sac and chorion form a choriovitelline placenta to support the early embryo, although this soon is supplanted by a chorioallantoic placenta. Human and haplorrhine primates follow a second pattern where precocious development of the extraembryonic mesoderm leads to formation of a secondary yolk sac within the exocoelom. In rodents there is an inverted visceral yolk sac that encloses the embryo and amnion and functions as an accessory to the chorioallantoic placenta through term. Where present, the inverted yolk sac performs a number of functions that in human are assumed by the syncytiotrophoblast of the chorioallantoic placenta. These include transfer of passive immunity, iron, cobalamin and lipoprotein; protein and lipid synthesis; haematopoiesis; and germ cell storage. Most mammals have a large, fluid-filled allantoic cavity. This is not the case in human and haplorrhine primates where there is an allantoic stalk but no allantoic cavity. Some rodents have a small allantoic cavity, but the mouse and other murine rodents do not. The evolution of amnion, yolk sac and allantois is explored. Conclusions Fetal membranes deserve close attention. In particular, the mouse model is incomplete unless the yolk sac is studied along with the chorioallantoic placenta.</description><subject>Allantois</subject><subject>Amnion</subject><subject>Animals</subject><subject>Awards and Prizes</subject><subject>Biological Evolution</subject><subject>Exocoelom</subject><subject>Extraembryonic Membranes - physiology</subject><subject>Female</subject><subject>Haematopoiesis</subject><subject>Internal Medicine</subject><subject>Mammals - physiology</subject><subject>Obstetrics and Gynecology</subject><subject>Passive immunity</subject><subject>Placenta - physiology</subject><subject>Placental transfer</subject><subject>Placentation - physiology</subject><subject>Pregnancy</subject><subject>Yolk sac</subject><issn>0143-4004</issn><issn>1532-3102</issn><issn>1532-3102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhL1Q5cskyYzvOhgNiVVGotAikwtma2BPJSz4WOwH13-NoWw5cOM1o9M7X8wpxhbBFQPPmuD315HicaSsBq1zcAsonYoOVkqVCkE_FBlCrUgPoC_EipSMANBrlc3EhTYW7GpuN0Lc3X_fFHY9hisX-N0VfHNjNS-S3xWcaBuoDjUXHM_XFwEMbaeT0UjzrqE_86iFeiu83H75dfyoPXz7eXu8PpdO7Zi7rHTRetR11beUMAJKvGtRkWk2VkW3dEhqnct54X0tFDhmU7gBrLStP6lK8Ps89xennwmm2Q0iO-z4fMS3J4k4ao5Ru6iw1Z6mLU0qRO3uKYaB4bxHsSswe7SMxuxJb65lYbrx62LG0A_u_bY-IsuD9WcD501-Bo00u8OjYh5hJWT-F_-94988I14cxOOp_8D2n47TEMXO0aJO0YO9W31bbspcAtZTqD1FMkqY</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Carter, A.M</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8359-2085</orcidid></search><sort><creationdate>20161201</creationdate><title>IFPA Senior Award Lecture: Mammalian fetal membranes</title><author>Carter, A.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-7809d3bfafb5c6001ad5914a6b4a562b7ba16c3a569dd723ac1e034f017425da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Allantois</topic><topic>Amnion</topic><topic>Animals</topic><topic>Awards and Prizes</topic><topic>Biological Evolution</topic><topic>Exocoelom</topic><topic>Extraembryonic Membranes - physiology</topic><topic>Female</topic><topic>Haematopoiesis</topic><topic>Internal Medicine</topic><topic>Mammals - physiology</topic><topic>Obstetrics and Gynecology</topic><topic>Passive immunity</topic><topic>Placenta - physiology</topic><topic>Placental transfer</topic><topic>Placentation - physiology</topic><topic>Pregnancy</topic><topic>Yolk sac</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, A.M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Placenta (Eastbourne)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, A.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IFPA Senior Award Lecture: Mammalian fetal membranes</atitle><jtitle>Placenta (Eastbourne)</jtitle><addtitle>Placenta</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>48</volume><spage>S21</spage><epage>S30</epage><pages>S21-S30</pages><issn>0143-4004</issn><issn>1532-3102</issn><eissn>1532-3102</eissn><abstract>Abstract Background Fetal membrane development varies greatly across mammals with significant implications for models of human placentation. Method Therefore the major patterns of fetal membrane development are reviewed with special focus on functions of the inverted yolk sac in murine rodents. Findings In most mammals, yolk sac and chorion form a choriovitelline placenta to support the early embryo, although this soon is supplanted by a chorioallantoic placenta. Human and haplorrhine primates follow a second pattern where precocious development of the extraembryonic mesoderm leads to formation of a secondary yolk sac within the exocoelom. In rodents there is an inverted visceral yolk sac that encloses the embryo and amnion and functions as an accessory to the chorioallantoic placenta through term. Where present, the inverted yolk sac performs a number of functions that in human are assumed by the syncytiotrophoblast of the chorioallantoic placenta. These include transfer of passive immunity, iron, cobalamin and lipoprotein; protein and lipid synthesis; haematopoiesis; and germ cell storage. Most mammals have a large, fluid-filled allantoic cavity. This is not the case in human and haplorrhine primates where there is an allantoic stalk but no allantoic cavity. Some rodents have a small allantoic cavity, but the mouse and other murine rodents do not. The evolution of amnion, yolk sac and allantois is explored. Conclusions Fetal membranes deserve close attention. In particular, the mouse model is incomplete unless the yolk sac is studied along with the chorioallantoic placenta.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26518719</pmid><doi>10.1016/j.placenta.2015.10.012</doi><orcidid>https://orcid.org/0000-0002-8359-2085</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-4004
ispartof Placenta (Eastbourne), 2016-12, Vol.48, p.S21-S30
issn 0143-4004
1532-3102
1532-3102
language eng
recordid cdi_proquest_miscellaneous_1826633497
source ScienceDirect Freedom Collection 2022-2024
subjects Allantois
Amnion
Animals
Awards and Prizes
Biological Evolution
Exocoelom
Extraembryonic Membranes - physiology
Female
Haematopoiesis
Internal Medicine
Mammals - physiology
Obstetrics and Gynecology
Passive immunity
Placenta - physiology
Placental transfer
Placentation - physiology
Pregnancy
Yolk sac
title IFPA Senior Award Lecture: Mammalian fetal membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IFPA%20Senior%20Award%20Lecture:%20Mammalian%20fetal%20membranes&rft.jtitle=Placenta%20(Eastbourne)&rft.au=Carter,%20A.M&rft.date=2016-12-01&rft.volume=48&rft.spage=S21&rft.epage=S30&rft.pages=S21-S30&rft.issn=0143-4004&rft.eissn=1532-3102&rft_id=info:doi/10.1016/j.placenta.2015.10.012&rft_dat=%3Cproquest_cross%3E1826633497%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-7809d3bfafb5c6001ad5914a6b4a562b7ba16c3a569dd723ac1e034f017425da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826633497&rft_id=info:pmid/26518719&rfr_iscdi=true