Loading…
A Combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation
The present study was aimed to synthesize and characterize a bio-composite scaffold containing carboxymethyl cellulose (CMC), zinc doped nano-hydroxyapatite (Zn-nHAp) and ascorbic acid (AC) for bone tissue engineering applications. The fabricated bio-composite scaffold was characterized by SEM, FT-I...
Saved in:
Published in: | International journal of biological macromolecules 2016-12, Vol.93 (Pt B), p.1457-1464 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study was aimed to synthesize and characterize a bio-composite scaffold containing carboxymethyl cellulose (CMC), zinc doped nano-hydroxyapatite (Zn-nHAp) and ascorbic acid (AC) for bone tissue engineering applications. The fabricated bio-composite scaffold was characterized by SEM, FT-IR and XRD analyses. The ability of scaffold along with a bioactive molecule, microRNA-15b (miR-15b) for osteo-differentiation at cellular and molecular levels was determined using mouse mesenchymal stem cells (mMSCs). miR-15b acts as posttranscriptional gene regulator and regulates osteoblast differentiation. The scaffold and miR-15b were able to promote osteoblast differentiation; when these treatments were combined together on mMSCs, there was an additive effect on promotion of osteoblast differentiation. Thus, it appears that the combination of CMC/Zn-nHAp/AC scaffold with miR-15b would provide more efficient strategy for treating bone related defects and bone regeneration. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2015.12.083 |