Loading…

A Combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation

The present study was aimed to synthesize and characterize a bio-composite scaffold containing carboxymethyl cellulose (CMC), zinc doped nano-hydroxyapatite (Zn-nHAp) and ascorbic acid (AC) for bone tissue engineering applications. The fabricated bio-composite scaffold was characterized by SEM, FT-I...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2016-12, Vol.93 (Pt B), p.1457-1464
Main Authors: Vimalraj, S., Saravanan, S., Vairamani, M., Gopalakrishnan, C., Sastry, T.P., Selvamurugan, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was aimed to synthesize and characterize a bio-composite scaffold containing carboxymethyl cellulose (CMC), zinc doped nano-hydroxyapatite (Zn-nHAp) and ascorbic acid (AC) for bone tissue engineering applications. The fabricated bio-composite scaffold was characterized by SEM, FT-IR and XRD analyses. The ability of scaffold along with a bioactive molecule, microRNA-15b (miR-15b) for osteo-differentiation at cellular and molecular levels was determined using mouse mesenchymal stem cells (mMSCs). miR-15b acts as posttranscriptional gene regulator and regulates osteoblast differentiation. The scaffold and miR-15b were able to promote osteoblast differentiation; when these treatments were combined together on mMSCs, there was an additive effect on promotion of osteoblast differentiation. Thus, it appears that the combination of CMC/Zn-nHAp/AC scaffold with miR-15b would provide more efficient strategy for treating bone related defects and bone regeneration.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2015.12.083