Loading…
Formulation and Characterization of Bovine Serum Albumin-Loaded Niosome
Niosomal vesicle, as a unique novel drug delivery system, is synthesized by non-ionic surfactants. Both hydrophilic and lipophilic drugs and also biomacromolecular agents, such as peptides and proteins can be encapsulated in this vesicular particle. Regarding polypeptide-based component loading, and...
Saved in:
Published in: | AAPS PharmSciTech 2017-01, Vol.18 (1), p.27-33 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Niosomal vesicle, as a unique novel drug delivery system, is synthesized by non-ionic surfactants. Both hydrophilic and lipophilic drugs and also biomacromolecular agents, such as peptides and proteins can be encapsulated in this vesicular particle. Regarding polypeptide-based component loading, and delivery potential of the niosome, some valuable studies have been conducted in recent years. However, exploring the full potential of this approach requires fine tuned optimization and characterization approaches. Therefore, this study was conducted to achieve the following two goals. First, formulation and optimization of bovine serum albumin (BSA) load and release behavior as a function of cholesterol (CH) to sorbitan monostearate (Span 60) molar ratio. Second, investigating a cost- and time-effective polypeptide detecting method via methyl orange (MO) dye. To this aim, BSA-loaded niosomes were prepared by reversed-phase evaporation technique. The effect of CH to Sorbitan monostearate (Span 60) molar ratio on noisome entrapment efficiency (EE%) and release profile of BSA was studied using a ultraviolet (UV) spectrophotometer technique (NanoDrop 2000/2000c).Niosome with a 60% CH content showed the highest BSA EE% and release behavior. Then, BSA was dyed using MO in an acidic solution and used in BSA-niosome formulation. The MO-colored protein, loaded into the vesicles, was successfully assessed by an inverted light microscope, in order to observe the protein location in the vesicle. The results obtained in this study can be useful for various applications in different fields, including pharmaceutical, cosmetics, and drug delivery in biomedical and tissue engineering. |
---|---|
ISSN: | 1530-9932 1530-9932 |
DOI: | 10.1208/s12249-016-0487-1 |