Loading…

Curved muscles in biomechanical models of the spine: a systematic literature review

Early biomechanical spine models represented the trunk muscles as straight-line approximations. Later models have endeavoured to accurately represent muscle curvature around the torso. However, only a few studies have systematically examined various techniques and the logic underlying curved muscle...

Full description

Saved in:
Bibliographic Details
Published in:Ergonomics 2017-04, Vol.60 (4), p.577-588
Main Authors: Hwang, Jaejin, Knapik, Gregory G., Dufour, Jonathan S., Marras, William S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Early biomechanical spine models represented the trunk muscles as straight-line approximations. Later models have endeavoured to accurately represent muscle curvature around the torso. However, only a few studies have systematically examined various techniques and the logic underlying curved muscle models. The objective of this review was to systematically categorise curved muscle representation techniques and compare the underlying logic in biomechanical models of the spine. Thirty-five studies met our selection criteria. The most common technique of curved muscle path was the 'via-point' method. Curved muscle geometry was commonly developed from MRI/CT database and cadaveric dissections, and optimisation/inverse dynamics models were typically used to estimate muscle forces. Several models have attempted to validate their results by comparing their approach with previous studies, but it could not validate of specific tasks. For future needs, personalised muscle geometry, and person- or task-specific validation of curved muscle models would be necessary to improve model fidelity. Practitioner Summary: The logic underlying the curved muscle representations in spine models is still poorly understood. This literature review systematically categorised different approaches and evaluated their underlying logic. The findings could direct future development of curved muscle models to have a better understanding of the biomechanical causal pathways of spine disorders.
ISSN:0014-0139
1366-5847
DOI:10.1080/00140139.2016.1190410