Loading…

Effect of LA on the Growth and Development of the Main Organs in Female Mice

Effects of lead acetate (LA) on the growth and development of major organs in female mice were studied. Female mice were divided randomly into four treatment groups and one control group. In treatment groups, mice were injected with different concentrations of LA solution every 2 days; whereas contr...

Full description

Saved in:
Bibliographic Details
Published in:Biological trace element research 2017, Vol.175 (1), p.169-176
Main Authors: He, Xiuyuan, Lin, Feng, Li, Yongtao, Chen, Yuxia, Li, Jing, Guo, Linlin, Han, Xuelei, Song, Huan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effects of lead acetate (LA) on the growth and development of major organs in female mice were studied. Female mice were divided randomly into four treatment groups and one control group. In treatment groups, mice were injected with different concentrations of LA solution every 2 days; whereas control-group mice received equal volumes of sterile normal saline. Body weight (BW) and symptoms were recorded every 2 days. After LA exposure, mice were executed by cervical dislocation and main organs (heart, liver, spleen, lung, kidney) collected for evaluation of morphologic and histologic changes. LA could greatly affect increases in BW, and BW decreased with increasing dose and time of exposure to LA. Compared with the control group, organ coefficients in treatment groups were of the order kidney and spleen > liver and lung > heart and demonstrated obvious dose-time effects. LA exposure could damage the heart, liver, spleen, lung, and kidney. Damage to the kidney and spleen was the most severe, followed by that to the liver, heart, and lung. Damage was aggravated with increasing doses and exposure time to LA in an obvious dose–time relationship; when LA dose was ≥20 mg/kg, the growth and development of mice were obviously inhibited. These results suggest that long-term exposure to low-dose LA can result in universal pathologic damage to mouse organs and that severity is dependent on the dose and duration of LA exposure.
ISSN:0163-4984
1559-0720
DOI:10.1007/s12011-016-0757-5