Loading…
Unbiased classification of spatial strategies in the Barnes maze
Spatial learning is one of the most widely studied cognitive domains in neuroscience. The Morris water maze and the Barnes maze are the most commonly used techniques to assess spatial learning and memory in rodents. Despite the fact that these tasks are well-validated paradigms for testing spatial l...
Saved in:
Published in: | Bioinformatics (Oxford, England) England), 2016-11, Vol.32 (21), p.3314-3320 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-86a44ce64d6f2a64c033667d892725c745d42492cc28ff371491fc8e8b33ed613 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-86a44ce64d6f2a64c033667d892725c745d42492cc28ff371491fc8e8b33ed613 |
container_end_page | 3320 |
container_issue | 21 |
container_start_page | 3314 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 32 |
creator | Illouz, Tomer Madar, Ravit Clague, Charlotte Griffioen, Kathleen J Louzoun, Yoram Okun, Eitan |
description | Spatial learning is one of the most widely studied cognitive domains in neuroscience. The Morris water maze and the Barnes maze are the most commonly used techniques to assess spatial learning and memory in rodents. Despite the fact that these tasks are well-validated paradigms for testing spatial learning abilities, manual categorization of performance into behavioral strategies is subject to individual interpretation, and thus to bias. We have previously described an unbiased machine-learning algorithm to classify spatial strategies in the Morris water maze.
Here, we offer a support vector machine-based, automated, Barnes-maze unbiased strategy (BUNS) classification algorithm, as well as a cognitive score scale that can be used for memory acquisition, reversal training and probe trials. The BUNS algorithm can greatly benefit Barnes maze users as it provides a standardized method of strategy classification and cognitive scoring scale, which cannot be derived from typical Barnes maze data analysis.
Freely available on the web at http://okunlab.wix.com/okunlab as a MATLAB application.
eitan.okun@biu.ac.ilSupplementary information: Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btw376 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826712449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826712449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-86a44ce64d6f2a64c033667d892725c745d42492cc28ff371491fc8e8b33ed613</originalsourceid><addsrcrecordid>eNpVkMtKAzEUhoMotlYfQcnSzdjcJsns1OINCm7sOmQyiUbmUnNSRJ_ekdaCq_Mf-C_wIXROyRUlFZ_XcYh9GFJnc3Qwr_MnV_IATSmXqhCa0sO9JnyCTgDeCSElKeUxmjDFlWZVOUXXq76OFnyDXWsBYohuLBx6PAQM61HaFkNONvvX6AHHHuc3j29t6sevs9_-FB0F24I_290ZWt3fvSwei-Xzw9PiZlk4wVgutLRCOC9FIwOzUjjCuZSq0RVTrHRKlI1gomLOMR0CV1RUNDjtdc25byTlM3S57V2n4WPjIZsugvNta3s_bMBQzaSiTIhqtJZbq0sDQPLBrFPsbPoylJhfeOY_PLOFN-YudhObuvPNPvVHi_8AU8VwDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826712449</pqid></control><display><type>article</type><title>Unbiased classification of spatial strategies in the Barnes maze</title><source>Oxford University Press Open Access</source><source>PubMed Central</source><creator>Illouz, Tomer ; Madar, Ravit ; Clague, Charlotte ; Griffioen, Kathleen J ; Louzoun, Yoram ; Okun, Eitan</creator><creatorcontrib>Illouz, Tomer ; Madar, Ravit ; Clague, Charlotte ; Griffioen, Kathleen J ; Louzoun, Yoram ; Okun, Eitan</creatorcontrib><description>Spatial learning is one of the most widely studied cognitive domains in neuroscience. The Morris water maze and the Barnes maze are the most commonly used techniques to assess spatial learning and memory in rodents. Despite the fact that these tasks are well-validated paradigms for testing spatial learning abilities, manual categorization of performance into behavioral strategies is subject to individual interpretation, and thus to bias. We have previously described an unbiased machine-learning algorithm to classify spatial strategies in the Morris water maze.
Here, we offer a support vector machine-based, automated, Barnes-maze unbiased strategy (BUNS) classification algorithm, as well as a cognitive score scale that can be used for memory acquisition, reversal training and probe trials. The BUNS algorithm can greatly benefit Barnes maze users as it provides a standardized method of strategy classification and cognitive scoring scale, which cannot be derived from typical Barnes maze data analysis.
Freely available on the web at http://okunlab.wix.com/okunlab as a MATLAB application.
eitan.okun@biu.ac.ilSupplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btw376</identifier><identifier>PMID: 27378295</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Animals ; Maze Learning ; Memory ; Support Vector Machine</subject><ispartof>Bioinformatics (Oxford, England), 2016-11, Vol.32 (21), p.3314-3320</ispartof><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-86a44ce64d6f2a64c033667d892725c745d42492cc28ff371491fc8e8b33ed613</citedby><cites>FETCH-LOGICAL-c422t-86a44ce64d6f2a64c033667d892725c745d42492cc28ff371491fc8e8b33ed613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27378295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Illouz, Tomer</creatorcontrib><creatorcontrib>Madar, Ravit</creatorcontrib><creatorcontrib>Clague, Charlotte</creatorcontrib><creatorcontrib>Griffioen, Kathleen J</creatorcontrib><creatorcontrib>Louzoun, Yoram</creatorcontrib><creatorcontrib>Okun, Eitan</creatorcontrib><title>Unbiased classification of spatial strategies in the Barnes maze</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Spatial learning is one of the most widely studied cognitive domains in neuroscience. The Morris water maze and the Barnes maze are the most commonly used techniques to assess spatial learning and memory in rodents. Despite the fact that these tasks are well-validated paradigms for testing spatial learning abilities, manual categorization of performance into behavioral strategies is subject to individual interpretation, and thus to bias. We have previously described an unbiased machine-learning algorithm to classify spatial strategies in the Morris water maze.
Here, we offer a support vector machine-based, automated, Barnes-maze unbiased strategy (BUNS) classification algorithm, as well as a cognitive score scale that can be used for memory acquisition, reversal training and probe trials. The BUNS algorithm can greatly benefit Barnes maze users as it provides a standardized method of strategy classification and cognitive scoring scale, which cannot be derived from typical Barnes maze data analysis.
Freely available on the web at http://okunlab.wix.com/okunlab as a MATLAB application.
eitan.okun@biu.ac.ilSupplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Maze Learning</subject><subject>Memory</subject><subject>Support Vector Machine</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkMtKAzEUhoMotlYfQcnSzdjcJsns1OINCm7sOmQyiUbmUnNSRJ_ekdaCq_Mf-C_wIXROyRUlFZ_XcYh9GFJnc3Qwr_MnV_IATSmXqhCa0sO9JnyCTgDeCSElKeUxmjDFlWZVOUXXq76OFnyDXWsBYohuLBx6PAQM61HaFkNONvvX6AHHHuc3j29t6sevs9_-FB0F24I_290ZWt3fvSwei-Xzw9PiZlk4wVgutLRCOC9FIwOzUjjCuZSq0RVTrHRKlI1gomLOMR0CV1RUNDjtdc25byTlM3S57V2n4WPjIZsugvNta3s_bMBQzaSiTIhqtJZbq0sDQPLBrFPsbPoylJhfeOY_PLOFN-YudhObuvPNPvVHi_8AU8VwDQ</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Illouz, Tomer</creator><creator>Madar, Ravit</creator><creator>Clague, Charlotte</creator><creator>Griffioen, Kathleen J</creator><creator>Louzoun, Yoram</creator><creator>Okun, Eitan</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161101</creationdate><title>Unbiased classification of spatial strategies in the Barnes maze</title><author>Illouz, Tomer ; Madar, Ravit ; Clague, Charlotte ; Griffioen, Kathleen J ; Louzoun, Yoram ; Okun, Eitan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-86a44ce64d6f2a64c033667d892725c745d42492cc28ff371491fc8e8b33ed613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Maze Learning</topic><topic>Memory</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Illouz, Tomer</creatorcontrib><creatorcontrib>Madar, Ravit</creatorcontrib><creatorcontrib>Clague, Charlotte</creatorcontrib><creatorcontrib>Griffioen, Kathleen J</creatorcontrib><creatorcontrib>Louzoun, Yoram</creatorcontrib><creatorcontrib>Okun, Eitan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Illouz, Tomer</au><au>Madar, Ravit</au><au>Clague, Charlotte</au><au>Griffioen, Kathleen J</au><au>Louzoun, Yoram</au><au>Okun, Eitan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbiased classification of spatial strategies in the Barnes maze</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>32</volume><issue>21</issue><spage>3314</spage><epage>3320</epage><pages>3314-3320</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Spatial learning is one of the most widely studied cognitive domains in neuroscience. The Morris water maze and the Barnes maze are the most commonly used techniques to assess spatial learning and memory in rodents. Despite the fact that these tasks are well-validated paradigms for testing spatial learning abilities, manual categorization of performance into behavioral strategies is subject to individual interpretation, and thus to bias. We have previously described an unbiased machine-learning algorithm to classify spatial strategies in the Morris water maze.
Here, we offer a support vector machine-based, automated, Barnes-maze unbiased strategy (BUNS) classification algorithm, as well as a cognitive score scale that can be used for memory acquisition, reversal training and probe trials. The BUNS algorithm can greatly benefit Barnes maze users as it provides a standardized method of strategy classification and cognitive scoring scale, which cannot be derived from typical Barnes maze data analysis.
Freely available on the web at http://okunlab.wix.com/okunlab as a MATLAB application.
eitan.okun@biu.ac.ilSupplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pmid>27378295</pmid><doi>10.1093/bioinformatics/btw376</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2016-11, Vol.32 (21), p.3314-3320 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826712449 |
source | Oxford University Press Open Access; PubMed Central |
subjects | Algorithms Animals Maze Learning Memory Support Vector Machine |
title | Unbiased classification of spatial strategies in the Barnes maze |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbiased%20classification%20of%20spatial%20strategies%20in%20the%20Barnes%20maze&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Illouz,%20Tomer&rft.date=2016-11-01&rft.volume=32&rft.issue=21&rft.spage=3314&rft.epage=3320&rft.pages=3314-3320&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btw376&rft_dat=%3Cproquest_cross%3E1826712449%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-86a44ce64d6f2a64c033667d892725c745d42492cc28ff371491fc8e8b33ed613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1826712449&rft_id=info:pmid/27378295&rfr_iscdi=true |