Loading…

Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals

The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filte...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2017-07, Vol.21 (4), p.888-896
Main Authors: Tiwari, Ashwani Kumar, Pachori, Ram Bilas, Kanhangad, Vivek, Panigrahi, Bijaya Ketan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843
cites cdi_FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843
container_end_page 896
container_issue 4
container_start_page 888
container_title IEEE journal of biomedical and health informatics
container_volume 21
creator Tiwari, Ashwani Kumar
Pachori, Ram Bilas
Kanhangad, Vivek
Panigrahi, Bijaya Ketan
description The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection.
doi_str_mv 10.1109/JBHI.2016.2589971
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826718269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7508917</ieee_id><sourcerecordid>1916521223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqjwAxASisTCkuJzHMceaSnloxJIwMBkucmlMkrjEidD_z0ObRnw4DvZz3uyH0LOgY4AqLp5Gj88jhgFMWKpVCqDA3LCQMiYMSoP9z0oPiBn3n_RsGQ4UuKYDFjGQQiqTsjnbde6lWmxiO6sWdbOWx-5MpqubYVrv4k-vK2X0TNu4ldn6zYeGx_YuctNFY1tbZpN9GraFpv6NzadRW92WZvKn5KjMhQ829Uh-bifvk8e4vnL7HFyO49zDmkbZ7nhCbAi5wuFqeSZyYsFyyRDU8qcoTKQikIlqjRMIaUFFjwRAFByHjCeDMn1du66cd8d-lavrM-xqkyNrvMaJBNZv6mAXv1Dv1zX9I_VoECkDBhLAgVbKm-c9w2Wet3YVfioBqp79bpXr3v1eqc-ZC53k7vFCou_xF50AC62gEXEv-sspVJBlvwAoHCFUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916521223</pqid></control><display><type>article</type><title>Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tiwari, Ashwani Kumar ; Pachori, Ram Bilas ; Kanhangad, Vivek ; Panigrahi, Bijaya Ketan</creator><creatorcontrib>Tiwari, Ashwani Kumar ; Pachori, Ram Bilas ; Kanhangad, Vivek ; Panigrahi, Bijaya Ketan</creatorcontrib><description>The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2016.2589971</identifier><identifier>PMID: 27416609</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Automation ; Classification ; Computation ; Computer-assisted diagnosis ; Databases, Factual ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; EEG ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnosis ; Feature extraction ; Histograms ; Humans ; Informatics ; local binary pattern (LBP) ; Medical diagnosis ; Methodology ; Seizing ; Seizures ; Signal Processing, Computer-Assisted ; Sons ; Support Vector Machine ; support vector machine (SVM) classifier ; Support vector machines</subject><ispartof>IEEE journal of biomedical and health informatics, 2017-07, Vol.21 (4), p.888-896</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843</citedby><cites>FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7508917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27416609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiwari, Ashwani Kumar</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><creatorcontrib>Kanhangad, Vivek</creatorcontrib><creatorcontrib>Panigrahi, Bijaya Ketan</creatorcontrib><title>Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Classification</subject><subject>Computation</subject><subject>Computer-assisted diagnosis</subject><subject>Databases, Factual</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Humans</subject><subject>Informatics</subject><subject>local binary pattern (LBP)</subject><subject>Medical diagnosis</subject><subject>Methodology</subject><subject>Seizing</subject><subject>Seizures</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sons</subject><subject>Support Vector Machine</subject><subject>support vector machine (SVM) classifier</subject><subject>Support vector machines</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EoqjwAxASisTCkuJzHMceaSnloxJIwMBkucmlMkrjEidD_z0ObRnw4DvZz3uyH0LOgY4AqLp5Gj88jhgFMWKpVCqDA3LCQMiYMSoP9z0oPiBn3n_RsGQ4UuKYDFjGQQiqTsjnbde6lWmxiO6sWdbOWx-5MpqubYVrv4k-vK2X0TNu4ldn6zYeGx_YuctNFY1tbZpN9GraFpv6NzadRW92WZvKn5KjMhQ829Uh-bifvk8e4vnL7HFyO49zDmkbZ7nhCbAi5wuFqeSZyYsFyyRDU8qcoTKQikIlqjRMIaUFFjwRAFByHjCeDMn1du66cd8d-lavrM-xqkyNrvMaJBNZv6mAXv1Dv1zX9I_VoECkDBhLAgVbKm-c9w2Wet3YVfioBqp79bpXr3v1eqc-ZC53k7vFCou_xF50AC62gEXEv-sspVJBlvwAoHCFUA</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Tiwari, Ashwani Kumar</creator><creator>Pachori, Ram Bilas</creator><creator>Kanhangad, Vivek</creator><creator>Panigrahi, Bijaya Ketan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals</title><author>Tiwari, Ashwani Kumar ; Pachori, Ram Bilas ; Kanhangad, Vivek ; Panigrahi, Bijaya Ketan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Classification</topic><topic>Computation</topic><topic>Computer-assisted diagnosis</topic><topic>Databases, Factual</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Humans</topic><topic>Informatics</topic><topic>local binary pattern (LBP)</topic><topic>Medical diagnosis</topic><topic>Methodology</topic><topic>Seizing</topic><topic>Seizures</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sons</topic><topic>Support Vector Machine</topic><topic>support vector machine (SVM) classifier</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiwari, Ashwani Kumar</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><creatorcontrib>Kanhangad, Vivek</creatorcontrib><creatorcontrib>Panigrahi, Bijaya Ketan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiwari, Ashwani Kumar</au><au>Pachori, Ram Bilas</au><au>Kanhangad, Vivek</au><au>Panigrahi, Bijaya Ketan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2017-07</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>888</spage><epage>896</epage><pages>888-896</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27416609</pmid><doi>10.1109/JBHI.2016.2589971</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2017-07, Vol.21 (4), p.888-896
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_miscellaneous_1826718269
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
Automation
Classification
Computation
Computer-assisted diagnosis
Databases, Factual
Diagnosis
Diagnosis, Computer-Assisted - methods
EEG
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
Feature extraction
Histograms
Humans
Informatics
local binary pattern (LBP)
Medical diagnosis
Methodology
Seizing
Seizures
Signal Processing, Computer-Assisted
Sons
Support Vector Machine
support vector machine (SVM) classifier
Support vector machines
title Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Diagnosis%20of%20Epilepsy%20Using%20Key-Point-Based%20Local%20Binary%20Pattern%20of%20EEG%20Signals&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Tiwari,%20Ashwani%20Kumar&rft.date=2017-07&rft.volume=21&rft.issue=4&rft.spage=888&rft.epage=896&rft.pages=888-896&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2016.2589971&rft_dat=%3Cproquest_pubme%3E1916521223%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916521223&rft_id=info:pmid/27416609&rft_ieee_id=7508917&rfr_iscdi=true