Loading…
Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals
The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filte...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2017-07, Vol.21 (4), p.888-896 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843 |
container_end_page | 896 |
container_issue | 4 |
container_start_page | 888 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 21 |
creator | Tiwari, Ashwani Kumar Pachori, Ram Bilas Kanhangad, Vivek Panigrahi, Bijaya Ketan |
description | The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection. |
doi_str_mv | 10.1109/JBHI.2016.2589971 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1826718269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7508917</ieee_id><sourcerecordid>1916521223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqjwAxASisTCkuJzHMceaSnloxJIwMBkucmlMkrjEidD_z0ObRnw4DvZz3uyH0LOgY4AqLp5Gj88jhgFMWKpVCqDA3LCQMiYMSoP9z0oPiBn3n_RsGQ4UuKYDFjGQQiqTsjnbde6lWmxiO6sWdbOWx-5MpqubYVrv4k-vK2X0TNu4ldn6zYeGx_YuctNFY1tbZpN9GraFpv6NzadRW92WZvKn5KjMhQ829Uh-bifvk8e4vnL7HFyO49zDmkbZ7nhCbAi5wuFqeSZyYsFyyRDU8qcoTKQikIlqjRMIaUFFjwRAFByHjCeDMn1du66cd8d-lavrM-xqkyNrvMaJBNZv6mAXv1Dv1zX9I_VoECkDBhLAgVbKm-c9w2Wet3YVfioBqp79bpXr3v1eqc-ZC53k7vFCou_xF50AC62gEXEv-sspVJBlvwAoHCFUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916521223</pqid></control><display><type>article</type><title>Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tiwari, Ashwani Kumar ; Pachori, Ram Bilas ; Kanhangad, Vivek ; Panigrahi, Bijaya Ketan</creator><creatorcontrib>Tiwari, Ashwani Kumar ; Pachori, Ram Bilas ; Kanhangad, Vivek ; Panigrahi, Bijaya Ketan</creatorcontrib><description>The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2016.2589971</identifier><identifier>PMID: 27416609</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Automation ; Classification ; Computation ; Computer-assisted diagnosis ; Databases, Factual ; Diagnosis ; Diagnosis, Computer-Assisted - methods ; EEG ; Electroencephalography ; Electroencephalography - methods ; Epilepsy ; Epilepsy - diagnosis ; Feature extraction ; Histograms ; Humans ; Informatics ; local binary pattern (LBP) ; Medical diagnosis ; Methodology ; Seizing ; Seizures ; Signal Processing, Computer-Assisted ; Sons ; Support Vector Machine ; support vector machine (SVM) classifier ; Support vector machines</subject><ispartof>IEEE journal of biomedical and health informatics, 2017-07, Vol.21 (4), p.888-896</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843</citedby><cites>FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7508917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27416609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiwari, Ashwani Kumar</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><creatorcontrib>Kanhangad, Vivek</creatorcontrib><creatorcontrib>Panigrahi, Bijaya Ketan</creatorcontrib><title>Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Classification</subject><subject>Computation</subject><subject>Computer-assisted diagnosis</subject><subject>Databases, Factual</subject><subject>Diagnosis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Epilepsy</subject><subject>Epilepsy - diagnosis</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Humans</subject><subject>Informatics</subject><subject>local binary pattern (LBP)</subject><subject>Medical diagnosis</subject><subject>Methodology</subject><subject>Seizing</subject><subject>Seizures</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sons</subject><subject>Support Vector Machine</subject><subject>support vector machine (SVM) classifier</subject><subject>Support vector machines</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EoqjwAxASisTCkuJzHMceaSnloxJIwMBkucmlMkrjEidD_z0ObRnw4DvZz3uyH0LOgY4AqLp5Gj88jhgFMWKpVCqDA3LCQMiYMSoP9z0oPiBn3n_RsGQ4UuKYDFjGQQiqTsjnbde6lWmxiO6sWdbOWx-5MpqubYVrv4k-vK2X0TNu4ldn6zYeGx_YuctNFY1tbZpN9GraFpv6NzadRW92WZvKn5KjMhQ829Uh-bifvk8e4vnL7HFyO49zDmkbZ7nhCbAi5wuFqeSZyYsFyyRDU8qcoTKQikIlqjRMIaUFFjwRAFByHjCeDMn1du66cd8d-lavrM-xqkyNrvMaJBNZv6mAXv1Dv1zX9I_VoECkDBhLAgVbKm-c9w2Wet3YVfioBqp79bpXr3v1eqc-ZC53k7vFCou_xF50AC62gEXEv-sspVJBlvwAoHCFUA</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Tiwari, Ashwani Kumar</creator><creator>Pachori, Ram Bilas</creator><creator>Kanhangad, Vivek</creator><creator>Panigrahi, Bijaya Ketan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals</title><author>Tiwari, Ashwani Kumar ; Pachori, Ram Bilas ; Kanhangad, Vivek ; Panigrahi, Bijaya Ketan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Classification</topic><topic>Computation</topic><topic>Computer-assisted diagnosis</topic><topic>Databases, Factual</topic><topic>Diagnosis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Epilepsy</topic><topic>Epilepsy - diagnosis</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Humans</topic><topic>Informatics</topic><topic>local binary pattern (LBP)</topic><topic>Medical diagnosis</topic><topic>Methodology</topic><topic>Seizing</topic><topic>Seizures</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sons</topic><topic>Support Vector Machine</topic><topic>support vector machine (SVM) classifier</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiwari, Ashwani Kumar</creatorcontrib><creatorcontrib>Pachori, Ram Bilas</creatorcontrib><creatorcontrib>Kanhangad, Vivek</creatorcontrib><creatorcontrib>Panigrahi, Bijaya Ketan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiwari, Ashwani Kumar</au><au>Pachori, Ram Bilas</au><au>Kanhangad, Vivek</au><au>Panigrahi, Bijaya Ketan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2017-07</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>888</spage><epage>896</epage><pages>888-896</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27416609</pmid><doi>10.1109/JBHI.2016.2589971</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2017-07, Vol.21 (4), p.888-896 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_1826718269 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Automation Classification Computation Computer-assisted diagnosis Databases, Factual Diagnosis Diagnosis, Computer-Assisted - methods EEG Electroencephalography Electroencephalography - methods Epilepsy Epilepsy - diagnosis Feature extraction Histograms Humans Informatics local binary pattern (LBP) Medical diagnosis Methodology Seizing Seizures Signal Processing, Computer-Assisted Sons Support Vector Machine support vector machine (SVM) classifier Support vector machines |
title | Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Diagnosis%20of%20Epilepsy%20Using%20Key-Point-Based%20Local%20Binary%20Pattern%20of%20EEG%20Signals&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Tiwari,%20Ashwani%20Kumar&rft.date=2017-07&rft.volume=21&rft.issue=4&rft.spage=888&rft.epage=896&rft.pages=888-896&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2016.2589971&rft_dat=%3Cproquest_pubme%3E1916521223%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-7ca4312dc4b9e5847acdb2782eaf8c2e9a156d939fa29e00ded436111f4427843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916521223&rft_id=info:pmid/27416609&rft_ieee_id=7508917&rfr_iscdi=true |