Loading…
Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves
There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and...
Saved in:
Published in: | Cardiovascular engineering and technology 2016-12, Vol.7 (4), p.352-362 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance. |
---|---|
ISSN: | 1869-408X 1869-4098 |
DOI: | 10.1007/s13239-016-0275-9 |