Loading…

SubsMatch 2.0: Scanpath comparison and classification based on subsequence frequencies

Our eye movements are driven by a continuous trade-off between the need for detailed examination of objects of interest and the necessity to keep an overview of our surrounding. In consequence, behavioral patterns that are characteristic for our actions and their planning are typically manifested in...

Full description

Saved in:
Bibliographic Details
Published in:Behavior research methods 2017-06, Vol.49 (3), p.1048-1064
Main Authors: Kübler, Thomas C., Rothe, Colleen, Schiefer, Ulrich, Rosenstiel, Wolfgang, Kasneci, Enkelejda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Our eye movements are driven by a continuous trade-off between the need for detailed examination of objects of interest and the necessity to keep an overview of our surrounding. In consequence, behavioral patterns that are characteristic for our actions and their planning are typically manifested in the way we move our eyes to interact with our environment. Identifying such patterns from individual eye movement measurements is however highly challenging. In this work, we tackle the challenge of quantifying the influence of experimental factors on eye movement sequences. We introduce an algorithm for extracting sequence-sensitive features from eye movements and for the classification of eye movements based on the frequencies of small subsequences. Our approach is evaluated against the state-of-the art on a novel and a very rich collection of eye movements data derived from four experimental settings, from static viewing tasks to highly dynamic outdoor settings. Our results show that the proposed method is able to classify eye movement sequences over a variety of experimental designs. The choice of parameters is discussed in detail with special focus on highlighting different aspects of general scanpath shape. Algorithms and evaluation data are available at: http://www.ti.uni-tuebingen.de/scanpathcomparison.html .
ISSN:1554-3528
1554-3528
DOI:10.3758/s13428-016-0765-6