Loading…
Optimal averaging of soil moisture predictions from ensemble land surface model simulations
The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variab...
Saved in:
Published in: | Water resources research 2015-11, Vol.51 (11), p.9273-9289 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3 |
container_end_page | 9289 |
container_issue | 11 |
container_start_page | 9273 |
container_title | Water resources research |
container_volume | 51 |
creator | Crow, W. T. Su, C.-H. Ryu, D. Yilmaz, M. T. |
description | The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long‐term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS‐2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS‐2 LSM ensemble and a biased‐minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long‐term, satellite‐based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence.
Key Points:
Soil moisture can be predicted from a mulit‐model ensemble
Interpretation of the ensemble requires model error covariance information
Such information can be obtained using an instrumental variable approach |
doi_str_mv | 10.1002/2015WR016944 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827904680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3924477111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS1UJFLorR_AUi8cWOp_a-8eqwhSpKiJolQrwcHybsbI1LsOdpaSb1-3qRDiwGkO83ujN-8h9JmSS0oI-8oILZsVobIW4ghNaB6FqhX_gCaECF5QXqsT9DGlB0KoKKWaoLvFdud647F5gmju3XCPg8UpOI_74NJujIC3ETau27kwJGxj6DEMCfrWA_Zm2OA0Rms6yPwGPE6uH735B5-hY2t8gk__5yn6eX21nn4v5ovZzfTbvOiEEKqQZd12UlILxFZtdgYV1KIVXJgWgAGXrO5EaykoW1Zlu2EgGJUdoflTlven6PxwdxvD4whpp3uXOvDZHYQxaVoxVRMhK5LRL2_QhzDGIbvTjJCcSJkzfI-iqlRK8JrzTF0cqC6GlCJYvY05yrjXlOi_fejXfWScH_DfzsP-XVY3q-mKUVWprCoOqtwFPL-oTPylpeKq1M2Pmb5t1nS5rBrN-R_fbpqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757743933</pqid></control><display><type>article</type><title>Optimal averaging of soil moisture predictions from ensemble land surface model simulations</title><source>Wiley Online Library AGU Free Content</source><creator>Crow, W. T. ; Su, C.-H. ; Ryu, D. ; Yilmaz, M. T.</creator><creatorcontrib>Crow, W. T. ; Su, C.-H. ; Ryu, D. ; Yilmaz, M. T.</creatorcontrib><description>The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long‐term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS‐2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS‐2 LSM ensemble and a biased‐minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long‐term, satellite‐based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence.
Key Points:
Soil moisture can be predicted from a mulit‐model ensemble
Interpretation of the ensemble requires model error covariance information
Such information can be obtained using an instrumental variable approach</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2015WR016944</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Climate change ; Coefficients ; Computer simulation ; Covariance ; Data ; Data acquisition ; Data assimilation ; Data collection ; Data processing ; ensemble ; land surface modeling ; Land surface models ; Moisture ; Regression analysis ; Remote sensing ; Rescaling ; Satellites ; Scaling ; Soil ; Soil analysis ; Soil conditions ; Soil moisture ; Soil surfaces</subject><ispartof>Water resources research, 2015-11, Vol.51 (11), p.9273-9289</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3</citedby><cites>FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015WR016944$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015WR016944$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Crow, W. T.</creatorcontrib><creatorcontrib>Su, C.-H.</creatorcontrib><creatorcontrib>Ryu, D.</creatorcontrib><creatorcontrib>Yilmaz, M. T.</creatorcontrib><title>Optimal averaging of soil moisture predictions from ensemble land surface model simulations</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long‐term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS‐2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS‐2 LSM ensemble and a biased‐minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long‐term, satellite‐based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence.
Key Points:
Soil moisture can be predicted from a mulit‐model ensemble
Interpretation of the ensemble requires model error covariance information
Such information can be obtained using an instrumental variable approach</description><subject>Climate change</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Data</subject><subject>Data acquisition</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Data processing</subject><subject>ensemble</subject><subject>land surface modeling</subject><subject>Land surface models</subject><subject>Moisture</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Rescaling</subject><subject>Satellites</subject><subject>Scaling</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxS1UJFLorR_AUi8cWOp_a-8eqwhSpKiJolQrwcHybsbI1LsOdpaSb1-3qRDiwGkO83ujN-8h9JmSS0oI-8oILZsVobIW4ghNaB6FqhX_gCaECF5QXqsT9DGlB0KoKKWaoLvFdud647F5gmju3XCPg8UpOI_74NJujIC3ETau27kwJGxj6DEMCfrWA_Zm2OA0Rms6yPwGPE6uH735B5-hY2t8gk__5yn6eX21nn4v5ovZzfTbvOiEEKqQZd12UlILxFZtdgYV1KIVXJgWgAGXrO5EaykoW1Zlu2EgGJUdoflTlven6PxwdxvD4whpp3uXOvDZHYQxaVoxVRMhK5LRL2_QhzDGIbvTjJCcSJkzfI-iqlRK8JrzTF0cqC6GlCJYvY05yrjXlOi_fejXfWScH_DfzsP-XVY3q-mKUVWprCoOqtwFPL-oTPylpeKq1M2Pmb5t1nS5rBrN-R_fbpqc</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Crow, W. T.</creator><creator>Su, C.-H.</creator><creator>Ryu, D.</creator><creator>Yilmaz, M. T.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201511</creationdate><title>Optimal averaging of soil moisture predictions from ensemble land surface model simulations</title><author>Crow, W. T. ; Su, C.-H. ; Ryu, D. ; Yilmaz, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Climate change</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Data</topic><topic>Data acquisition</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Data processing</topic><topic>ensemble</topic><topic>land surface modeling</topic><topic>Land surface models</topic><topic>Moisture</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Rescaling</topic><topic>Satellites</topic><topic>Scaling</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crow, W. T.</creatorcontrib><creatorcontrib>Su, C.-H.</creatorcontrib><creatorcontrib>Ryu, D.</creatorcontrib><creatorcontrib>Yilmaz, M. T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crow, W. T.</au><au>Su, C.-H.</au><au>Ryu, D.</au><au>Yilmaz, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal averaging of soil moisture predictions from ensemble land surface model simulations</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2015-11</date><risdate>2015</risdate><volume>51</volume><issue>11</issue><spage>9273</spage><epage>9289</epage><pages>9273-9289</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long‐term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS‐2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS‐2 LSM ensemble and a biased‐minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long‐term, satellite‐based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence.
Key Points:
Soil moisture can be predicted from a mulit‐model ensemble
Interpretation of the ensemble requires model error covariance information
Such information can be obtained using an instrumental variable approach</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015WR016944</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2015-11, Vol.51 (11), p.9273-9289 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827904680 |
source | Wiley Online Library AGU Free Content |
subjects | Climate change Coefficients Computer simulation Covariance Data Data acquisition Data assimilation Data collection Data processing ensemble land surface modeling Land surface models Moisture Regression analysis Remote sensing Rescaling Satellites Scaling Soil Soil analysis Soil conditions Soil moisture Soil surfaces |
title | Optimal averaging of soil moisture predictions from ensemble land surface model simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20averaging%20of%20soil%20moisture%20predictions%20from%20ensemble%20land%20surface%20model%20simulations&rft.jtitle=Water%20resources%20research&rft.au=Crow,%20W.%20T.&rft.date=2015-11&rft.volume=51&rft.issue=11&rft.spage=9273&rft.epage=9289&rft.pages=9273-9289&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2015WR016944&rft_dat=%3Cproquest_cross%3E3924477111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757743933&rft_id=info:pmid/&rfr_iscdi=true |