Loading…

Optimal averaging of soil moisture predictions from ensemble land surface model simulations

The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variab...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2015-11, Vol.51 (11), p.9273-9289
Main Authors: Crow, W. T., Su, C.-H., Ryu, D., Yilmaz, M. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3
cites cdi_FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3
container_end_page 9289
container_issue 11
container_start_page 9273
container_title Water resources research
container_volume 51
creator Crow, W. T.
Su, C.-H.
Ryu, D.
Yilmaz, M. T.
description The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long‐term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS‐2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS‐2 LSM ensemble and a biased‐minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long‐term, satellite‐based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence. Key Points: Soil moisture can be predicted from a mulit‐model ensemble Interpretation of the ensemble requires model error covariance information Such information can be obtained using an instrumental variable approach
doi_str_mv 10.1002/2015WR016944
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827904680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3924477111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS1UJFLorR_AUi8cWOp_a-8eqwhSpKiJolQrwcHybsbI1LsOdpaSb1-3qRDiwGkO83ujN-8h9JmSS0oI-8oILZsVobIW4ghNaB6FqhX_gCaECF5QXqsT9DGlB0KoKKWaoLvFdud647F5gmju3XCPg8UpOI_74NJujIC3ETau27kwJGxj6DEMCfrWA_Zm2OA0Rms6yPwGPE6uH735B5-hY2t8gk__5yn6eX21nn4v5ovZzfTbvOiEEKqQZd12UlILxFZtdgYV1KIVXJgWgAGXrO5EaykoW1Zlu2EgGJUdoflTlven6PxwdxvD4whpp3uXOvDZHYQxaVoxVRMhK5LRL2_QhzDGIbvTjJCcSJkzfI-iqlRK8JrzTF0cqC6GlCJYvY05yrjXlOi_fejXfWScH_DfzsP-XVY3q-mKUVWprCoOqtwFPL-oTPylpeKq1M2Pmb5t1nS5rBrN-R_fbpqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757743933</pqid></control><display><type>article</type><title>Optimal averaging of soil moisture predictions from ensemble land surface model simulations</title><source>Wiley Online Library AGU Free Content</source><creator>Crow, W. T. ; Su, C.-H. ; Ryu, D. ; Yilmaz, M. T.</creator><creatorcontrib>Crow, W. T. ; Su, C.-H. ; Ryu, D. ; Yilmaz, M. T.</creatorcontrib><description>The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long‐term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS‐2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS‐2 LSM ensemble and a biased‐minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long‐term, satellite‐based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence. Key Points: Soil moisture can be predicted from a mulit‐model ensemble Interpretation of the ensemble requires model error covariance information Such information can be obtained using an instrumental variable approach</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2015WR016944</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Climate change ; Coefficients ; Computer simulation ; Covariance ; Data ; Data acquisition ; Data assimilation ; Data collection ; Data processing ; ensemble ; land surface modeling ; Land surface models ; Moisture ; Regression analysis ; Remote sensing ; Rescaling ; Satellites ; Scaling ; Soil ; Soil analysis ; Soil conditions ; Soil moisture ; Soil surfaces</subject><ispartof>Water resources research, 2015-11, Vol.51 (11), p.9273-9289</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3</citedby><cites>FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015WR016944$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015WR016944$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Crow, W. T.</creatorcontrib><creatorcontrib>Su, C.-H.</creatorcontrib><creatorcontrib>Ryu, D.</creatorcontrib><creatorcontrib>Yilmaz, M. T.</creatorcontrib><title>Optimal averaging of soil moisture predictions from ensemble land surface model simulations</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long‐term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS‐2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS‐2 LSM ensemble and a biased‐minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long‐term, satellite‐based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence. Key Points: Soil moisture can be predicted from a mulit‐model ensemble Interpretation of the ensemble requires model error covariance information Such information can be obtained using an instrumental variable approach</description><subject>Climate change</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Covariance</subject><subject>Data</subject><subject>Data acquisition</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Data processing</subject><subject>ensemble</subject><subject>land surface modeling</subject><subject>Land surface models</subject><subject>Moisture</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Rescaling</subject><subject>Satellites</subject><subject>Scaling</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxS1UJFLorR_AUi8cWOp_a-8eqwhSpKiJolQrwcHybsbI1LsOdpaSb1-3qRDiwGkO83ujN-8h9JmSS0oI-8oILZsVobIW4ghNaB6FqhX_gCaECF5QXqsT9DGlB0KoKKWaoLvFdud647F5gmju3XCPg8UpOI_74NJujIC3ETau27kwJGxj6DEMCfrWA_Zm2OA0Rms6yPwGPE6uH735B5-hY2t8gk__5yn6eX21nn4v5ovZzfTbvOiEEKqQZd12UlILxFZtdgYV1KIVXJgWgAGXrO5EaykoW1Zlu2EgGJUdoflTlven6PxwdxvD4whpp3uXOvDZHYQxaVoxVRMhK5LRL2_QhzDGIbvTjJCcSJkzfI-iqlRK8JrzTF0cqC6GlCJYvY05yrjXlOi_fejXfWScH_DfzsP-XVY3q-mKUVWprCoOqtwFPL-oTPylpeKq1M2Pmb5t1nS5rBrN-R_fbpqc</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Crow, W. T.</creator><creator>Su, C.-H.</creator><creator>Ryu, D.</creator><creator>Yilmaz, M. T.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201511</creationdate><title>Optimal averaging of soil moisture predictions from ensemble land surface model simulations</title><author>Crow, W. T. ; Su, C.-H. ; Ryu, D. ; Yilmaz, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Climate change</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Covariance</topic><topic>Data</topic><topic>Data acquisition</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Data processing</topic><topic>ensemble</topic><topic>land surface modeling</topic><topic>Land surface models</topic><topic>Moisture</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Rescaling</topic><topic>Satellites</topic><topic>Scaling</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crow, W. T.</creatorcontrib><creatorcontrib>Su, C.-H.</creatorcontrib><creatorcontrib>Ryu, D.</creatorcontrib><creatorcontrib>Yilmaz, M. T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crow, W. T.</au><au>Su, C.-H.</au><au>Ryu, D.</au><au>Yilmaz, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal averaging of soil moisture predictions from ensemble land surface model simulations</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2015-11</date><risdate>2015</risdate><volume>51</volume><issue>11</issue><spage>9273</spage><epage>9289</epage><pages>9273-9289</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The correct interpretation of ensemble information obtained from the parallel implementation of multiple land surface models (LSMs) requires information concerning the LSM ensemble's mutual error covariance. Here we propose a technique for obtaining such information using an instrumental variable (IV) regression approach and comparisons against a long‐term surface soil moisture data set acquired from satellite remote sensing. Application of the approach to multimodel ensemble soil moisture output from Phase 2 of the North American Land Data Assimilation System (NLDAS‐2) and European Space Agency (ESA) Soil Moisture (SM) Essential Climate Variable (ECV) data set allows for the calculation of optimal weighting coefficients for individual members of the NLDAS‐2 LSM ensemble and a biased‐minimized estimate of uncertainty in a deterministic soil moisture analysis derived via optimal averaging. As such, it provides key information required to accurately condition soil moisture expectations using information gleaned from a multimodel LSM ensemble. However, existing continuity and rescaling concerns surrounding the generation of long‐term, satellite‐based soil moisture products must likely be resolved before the proposed approach can be applied with full confidence. Key Points: Soil moisture can be predicted from a mulit‐model ensemble Interpretation of the ensemble requires model error covariance information Such information can be obtained using an instrumental variable approach</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015WR016944</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2015-11, Vol.51 (11), p.9273-9289
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_1827904680
source Wiley Online Library AGU Free Content
subjects Climate change
Coefficients
Computer simulation
Covariance
Data
Data acquisition
Data assimilation
Data collection
Data processing
ensemble
land surface modeling
Land surface models
Moisture
Regression analysis
Remote sensing
Rescaling
Satellites
Scaling
Soil
Soil analysis
Soil conditions
Soil moisture
Soil surfaces
title Optimal averaging of soil moisture predictions from ensemble land surface model simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20averaging%20of%20soil%20moisture%20predictions%20from%20ensemble%20land%20surface%20model%20simulations&rft.jtitle=Water%20resources%20research&rft.au=Crow,%20W.%20T.&rft.date=2015-11&rft.volume=51&rft.issue=11&rft.spage=9273&rft.epage=9289&rft.pages=9273-9289&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2015WR016944&rft_dat=%3Cproquest_cross%3E3924477111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4447-659bc661fe0f8b001e8e94b434abee2e3629c4bf1e7f585bd2e4216c0101622e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757743933&rft_id=info:pmid/&rfr_iscdi=true