Loading…

LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer

We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it doe...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2016-08, Vol.52 (8), p.6596-6610
Main Authors: Schneidewind, U., van Berkel, M., Anibas, C., Vandersteen, G., Schmidt, C., Joris, I., Seuntjens, P., Batelaan, O., Zwart, H. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953
cites cdi_FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953
container_end_page 6610
container_issue 8
container_start_page 6596
container_title Water resources research
container_volume 52
creator Schneidewind, U.
van Berkel, M.
Anibas, C.
Vandersteen, G.
Schmidt, C.
Joris, I.
Seuntjens, P.
Batelaan, O.
Zwart, H. J.
description We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it does not assume a semi‐infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature‐time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature‐time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum‐likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1‐D methods. Key Points: 1‐D method for studying water flow in the streambed using heat as a tracer Method is applicable for layered streambeds and results can be used in further analyses to delineate nonvertical water flow Method provides parameter uncertainties and model quality information
doi_str_mv 10.1002/2015WR017453
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827905237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908419274</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVmw-w4MWD0dnvrjep9QMiSlF6DJN0Y1PSpO4mlt58BJ_RJzGlHsSDcxkYfgx__oQcMzhnAPyCA1OTMTAjldghPWaljIw1Ypf0AKSImLBmnxyEMAdgUmnTI5P46SEeiUt6Rav63ZWUfX18XlNcLn2N2Yw2NQ1NO13TFTbO07ysV7Soupt3uEjdNNA2FNUrnTlsKAaKtPGYOX9I9nIsgzv62X3ycjN6Ht5F8ePt_fAqjlBqAxFq3eVQ2WZE6lKEqeYycwpSpW0qZAoZ15iDtjlTSip0wHIurRbOcKtEn5xu_3Z531oXmmRRhMyVJVaubkPCBtxYUFyYjp78ofO69VWXLmEWBpJZbmSnzrYq83UI3uXJ0hcL9OuEQbJpOfndcsfFlq-K0q3_tclkPBxzzhmIbwGkfAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908419274</pqid></control><display><type>article</type><title>LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Schneidewind, U. ; van Berkel, M. ; Anibas, C. ; Vandersteen, G. ; Schmidt, C. ; Joris, I. ; Seuntjens, P. ; Batelaan, O. ; Zwart, H. J.</creator><creatorcontrib>Schneidewind, U. ; van Berkel, M. ; Anibas, C. ; Vandersteen, G. ; Schmidt, C. ; Joris, I. ; Seuntjens, P. ; Batelaan, O. ; Zwart, H. J.</creatorcontrib><description>We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it does not assume a semi‐infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature‐time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature‐time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum‐likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1‐D methods. Key Points: 1‐D method for studying water flow in the streambed using heat as a tracer Method is applicable for layered streambeds and results can be used in further analyses to delineate nonvertical water flow Method provides parameter uncertainties and model quality information</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2015WR017453</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Boundary conditions ; Components ; Computer simulation ; Differential equations ; Diffusion coefficients ; Diffusivity ; Frequency dependence ; frequency domain ; Frequency response ; groundwater‐surface water interaction ; Heat ; heat tracer ; Heat transport ; hyporheic zone ; Identification ; Infinity ; Information dissemination ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimators ; maximum‐likelihood estimator ; Methods ; Noise ; Noise prediction ; Numerical models ; Parameter estimation ; Partial differential equations ; Rivers ; Sensors ; Streambeds ; Temperature ; Temperature data ; Temperature effects ; Thermal diffusivity ; Time series ; Tracers ; Transport ; Vertical flow ; Vertical mixing ; Water ; Water flow</subject><ispartof>Water resources research, 2016-08, Vol.52 (8), p.6596-6610</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953</citedby><cites>FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015WR017453$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015WR017453$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Schneidewind, U.</creatorcontrib><creatorcontrib>van Berkel, M.</creatorcontrib><creatorcontrib>Anibas, C.</creatorcontrib><creatorcontrib>Vandersteen, G.</creatorcontrib><creatorcontrib>Schmidt, C.</creatorcontrib><creatorcontrib>Joris, I.</creatorcontrib><creatorcontrib>Seuntjens, P.</creatorcontrib><creatorcontrib>Batelaan, O.</creatorcontrib><creatorcontrib>Zwart, H. J.</creatorcontrib><title>LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer</title><title>Water resources research</title><description>We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it does not assume a semi‐infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature‐time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature‐time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum‐likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1‐D methods. Key Points: 1‐D method for studying water flow in the streambed using heat as a tracer Method is applicable for layered streambeds and results can be used in further analyses to delineate nonvertical water flow Method provides parameter uncertainties and model quality information</description><subject>Boundary conditions</subject><subject>Components</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Diffusion coefficients</subject><subject>Diffusivity</subject><subject>Frequency dependence</subject><subject>frequency domain</subject><subject>Frequency response</subject><subject>groundwater‐surface water interaction</subject><subject>Heat</subject><subject>heat tracer</subject><subject>Heat transport</subject><subject>hyporheic zone</subject><subject>Identification</subject><subject>Infinity</subject><subject>Information dissemination</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimators</subject><subject>maximum‐likelihood estimator</subject><subject>Methods</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Rivers</subject><subject>Sensors</subject><subject>Streambeds</subject><subject>Temperature</subject><subject>Temperature data</subject><subject>Temperature effects</subject><subject>Thermal diffusivity</subject><subject>Time series</subject><subject>Tracers</subject><subject>Transport</subject><subject>Vertical flow</subject><subject>Vertical mixing</subject><subject>Water</subject><subject>Water flow</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AQB_BFFKzVmw-w4MWD0dnvrjep9QMiSlF6DJN0Y1PSpO4mlt58BJ_RJzGlHsSDcxkYfgx__oQcMzhnAPyCA1OTMTAjldghPWaljIw1Ypf0AKSImLBmnxyEMAdgUmnTI5P46SEeiUt6Rav63ZWUfX18XlNcLn2N2Yw2NQ1NO13TFTbO07ysV7Soupt3uEjdNNA2FNUrnTlsKAaKtPGYOX9I9nIsgzv62X3ycjN6Ht5F8ePt_fAqjlBqAxFq3eVQ2WZE6lKEqeYycwpSpW0qZAoZ15iDtjlTSip0wHIurRbOcKtEn5xu_3Z531oXmmRRhMyVJVaubkPCBtxYUFyYjp78ofO69VWXLmEWBpJZbmSnzrYq83UI3uXJ0hcL9OuEQbJpOfndcsfFlq-K0q3_tclkPBxzzhmIbwGkfAc</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Schneidewind, U.</creator><creator>van Berkel, M.</creator><creator>Anibas, C.</creator><creator>Vandersteen, G.</creator><creator>Schmidt, C.</creator><creator>Joris, I.</creator><creator>Seuntjens, P.</creator><creator>Batelaan, O.</creator><creator>Zwart, H. J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201608</creationdate><title>LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer</title><author>Schneidewind, U. ; van Berkel, M. ; Anibas, C. ; Vandersteen, G. ; Schmidt, C. ; Joris, I. ; Seuntjens, P. ; Batelaan, O. ; Zwart, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary conditions</topic><topic>Components</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Diffusion coefficients</topic><topic>Diffusivity</topic><topic>Frequency dependence</topic><topic>frequency domain</topic><topic>Frequency response</topic><topic>groundwater‐surface water interaction</topic><topic>Heat</topic><topic>heat tracer</topic><topic>Heat transport</topic><topic>hyporheic zone</topic><topic>Identification</topic><topic>Infinity</topic><topic>Information dissemination</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimators</topic><topic>maximum‐likelihood estimator</topic><topic>Methods</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Rivers</topic><topic>Sensors</topic><topic>Streambeds</topic><topic>Temperature</topic><topic>Temperature data</topic><topic>Temperature effects</topic><topic>Thermal diffusivity</topic><topic>Time series</topic><topic>Tracers</topic><topic>Transport</topic><topic>Vertical flow</topic><topic>Vertical mixing</topic><topic>Water</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneidewind, U.</creatorcontrib><creatorcontrib>van Berkel, M.</creatorcontrib><creatorcontrib>Anibas, C.</creatorcontrib><creatorcontrib>Vandersteen, G.</creatorcontrib><creatorcontrib>Schmidt, C.</creatorcontrib><creatorcontrib>Joris, I.</creatorcontrib><creatorcontrib>Seuntjens, P.</creatorcontrib><creatorcontrib>Batelaan, O.</creatorcontrib><creatorcontrib>Zwart, H. J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneidewind, U.</au><au>van Berkel, M.</au><au>Anibas, C.</au><au>Vandersteen, G.</au><au>Schmidt, C.</au><au>Joris, I.</au><au>Seuntjens, P.</au><au>Batelaan, O.</au><au>Zwart, H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer</atitle><jtitle>Water resources research</jtitle><date>2016-08</date><risdate>2016</risdate><volume>52</volume><issue>8</issue><spage>6596</spage><epage>6610</epage><pages>6596-6610</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it does not assume a semi‐infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature‐time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature‐time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum‐likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1‐D methods. Key Points: 1‐D method for studying water flow in the streambed using heat as a tracer Method is applicable for layered streambeds and results can be used in further analyses to delineate nonvertical water flow Method provides parameter uncertainties and model quality information</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2015WR017453</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2016-08, Vol.52 (8), p.6596-6610
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_1827905237
source Wiley-Blackwell AGU Digital Library
subjects Boundary conditions
Components
Computer simulation
Differential equations
Diffusion coefficients
Diffusivity
Frequency dependence
frequency domain
Frequency response
groundwater‐surface water interaction
Heat
heat tracer
Heat transport
hyporheic zone
Identification
Infinity
Information dissemination
Mathematical analysis
Mathematical models
Maximum likelihood estimators
maximum‐likelihood estimator
Methods
Noise
Noise prediction
Numerical models
Parameter estimation
Partial differential equations
Rivers
Sensors
Streambeds
Temperature
Temperature data
Temperature effects
Thermal diffusivity
Time series
Tracers
Transport
Vertical flow
Vertical mixing
Water
Water flow
title LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPMLE3:%20A%20novel%201%E2%80%90D%20approach%20to%20study%20water%20flow%20in%20streambeds%20using%20heat%20as%20a%20tracer&rft.jtitle=Water%20resources%20research&rft.au=Schneidewind,%20U.&rft.date=2016-08&rft.volume=52&rft.issue=8&rft.spage=6596&rft.epage=6610&rft.pages=6596-6610&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2015WR017453&rft_dat=%3Cproquest_cross%3E1908419274%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1908419274&rft_id=info:pmid/&rfr_iscdi=true