Loading…
LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer
We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it doe...
Saved in:
Published in: | Water resources research 2016-08, Vol.52 (8), p.6596-6610 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953 |
---|---|
cites | cdi_FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953 |
container_end_page | 6610 |
container_issue | 8 |
container_start_page | 6596 |
container_title | Water resources research |
container_volume | 52 |
creator | Schneidewind, U. van Berkel, M. Anibas, C. Vandersteen, G. Schmidt, C. Joris, I. Seuntjens, P. Batelaan, O. Zwart, H. J. |
description | We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it does not assume a semi‐infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature‐time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature‐time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum‐likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1‐D methods.
Key Points:
1‐D method for studying water flow in the streambed using heat as a tracer
Method is applicable for layered streambeds and results can be used in further analyses to delineate nonvertical water flow
Method provides parameter uncertainties and model quality information |
doi_str_mv | 10.1002/2015WR017453 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827905237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908419274</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953</originalsourceid><addsrcrecordid>eNp90M1Kw0AQB_BFFKzVmw-w4MWD0dnvrjep9QMiSlF6DJN0Y1PSpO4mlt58BJ_RJzGlHsSDcxkYfgx__oQcMzhnAPyCA1OTMTAjldghPWaljIw1Ypf0AKSImLBmnxyEMAdgUmnTI5P46SEeiUt6Rav63ZWUfX18XlNcLn2N2Yw2NQ1NO13TFTbO07ysV7Soupt3uEjdNNA2FNUrnTlsKAaKtPGYOX9I9nIsgzv62X3ycjN6Ht5F8ePt_fAqjlBqAxFq3eVQ2WZE6lKEqeYycwpSpW0qZAoZ15iDtjlTSip0wHIurRbOcKtEn5xu_3Z531oXmmRRhMyVJVaubkPCBtxYUFyYjp78ofO69VWXLmEWBpJZbmSnzrYq83UI3uXJ0hcL9OuEQbJpOfndcsfFlq-K0q3_tclkPBxzzhmIbwGkfAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908419274</pqid></control><display><type>article</type><title>LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Schneidewind, U. ; van Berkel, M. ; Anibas, C. ; Vandersteen, G. ; Schmidt, C. ; Joris, I. ; Seuntjens, P. ; Batelaan, O. ; Zwart, H. J.</creator><creatorcontrib>Schneidewind, U. ; van Berkel, M. ; Anibas, C. ; Vandersteen, G. ; Schmidt, C. ; Joris, I. ; Seuntjens, P. ; Batelaan, O. ; Zwart, H. J.</creatorcontrib><description>We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it does not assume a semi‐infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature‐time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature‐time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum‐likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1‐D methods.
Key Points:
1‐D method for studying water flow in the streambed using heat as a tracer
Method is applicable for layered streambeds and results can be used in further analyses to delineate nonvertical water flow
Method provides parameter uncertainties and model quality information</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2015WR017453</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Boundary conditions ; Components ; Computer simulation ; Differential equations ; Diffusion coefficients ; Diffusivity ; Frequency dependence ; frequency domain ; Frequency response ; groundwater‐surface water interaction ; Heat ; heat tracer ; Heat transport ; hyporheic zone ; Identification ; Infinity ; Information dissemination ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimators ; maximum‐likelihood estimator ; Methods ; Noise ; Noise prediction ; Numerical models ; Parameter estimation ; Partial differential equations ; Rivers ; Sensors ; Streambeds ; Temperature ; Temperature data ; Temperature effects ; Thermal diffusivity ; Time series ; Tracers ; Transport ; Vertical flow ; Vertical mixing ; Water ; Water flow</subject><ispartof>Water resources research, 2016-08, Vol.52 (8), p.6596-6610</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953</citedby><cites>FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015WR017453$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015WR017453$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Schneidewind, U.</creatorcontrib><creatorcontrib>van Berkel, M.</creatorcontrib><creatorcontrib>Anibas, C.</creatorcontrib><creatorcontrib>Vandersteen, G.</creatorcontrib><creatorcontrib>Schmidt, C.</creatorcontrib><creatorcontrib>Joris, I.</creatorcontrib><creatorcontrib>Seuntjens, P.</creatorcontrib><creatorcontrib>Batelaan, O.</creatorcontrib><creatorcontrib>Zwart, H. J.</creatorcontrib><title>LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer</title><title>Water resources research</title><description>We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it does not assume a semi‐infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature‐time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature‐time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum‐likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1‐D methods.
Key Points:
1‐D method for studying water flow in the streambed using heat as a tracer
Method is applicable for layered streambeds and results can be used in further analyses to delineate nonvertical water flow
Method provides parameter uncertainties and model quality information</description><subject>Boundary conditions</subject><subject>Components</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Diffusion coefficients</subject><subject>Diffusivity</subject><subject>Frequency dependence</subject><subject>frequency domain</subject><subject>Frequency response</subject><subject>groundwater‐surface water interaction</subject><subject>Heat</subject><subject>heat tracer</subject><subject>Heat transport</subject><subject>hyporheic zone</subject><subject>Identification</subject><subject>Infinity</subject><subject>Information dissemination</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimators</subject><subject>maximum‐likelihood estimator</subject><subject>Methods</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Rivers</subject><subject>Sensors</subject><subject>Streambeds</subject><subject>Temperature</subject><subject>Temperature data</subject><subject>Temperature effects</subject><subject>Thermal diffusivity</subject><subject>Time series</subject><subject>Tracers</subject><subject>Transport</subject><subject>Vertical flow</subject><subject>Vertical mixing</subject><subject>Water</subject><subject>Water flow</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90M1Kw0AQB_BFFKzVmw-w4MWD0dnvrjep9QMiSlF6DJN0Y1PSpO4mlt58BJ_RJzGlHsSDcxkYfgx__oQcMzhnAPyCA1OTMTAjldghPWaljIw1Ypf0AKSImLBmnxyEMAdgUmnTI5P46SEeiUt6Rav63ZWUfX18XlNcLn2N2Yw2NQ1NO13TFTbO07ysV7Soupt3uEjdNNA2FNUrnTlsKAaKtPGYOX9I9nIsgzv62X3ycjN6Ht5F8ePt_fAqjlBqAxFq3eVQ2WZE6lKEqeYycwpSpW0qZAoZ15iDtjlTSip0wHIurRbOcKtEn5xu_3Z531oXmmRRhMyVJVaubkPCBtxYUFyYjp78ofO69VWXLmEWBpJZbmSnzrYq83UI3uXJ0hcL9OuEQbJpOfndcsfFlq-K0q3_tclkPBxzzhmIbwGkfAc</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Schneidewind, U.</creator><creator>van Berkel, M.</creator><creator>Anibas, C.</creator><creator>Vandersteen, G.</creator><creator>Schmidt, C.</creator><creator>Joris, I.</creator><creator>Seuntjens, P.</creator><creator>Batelaan, O.</creator><creator>Zwart, H. J.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201608</creationdate><title>LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer</title><author>Schneidewind, U. ; van Berkel, M. ; Anibas, C. ; Vandersteen, G. ; Schmidt, C. ; Joris, I. ; Seuntjens, P. ; Batelaan, O. ; Zwart, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary conditions</topic><topic>Components</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Diffusion coefficients</topic><topic>Diffusivity</topic><topic>Frequency dependence</topic><topic>frequency domain</topic><topic>Frequency response</topic><topic>groundwater‐surface water interaction</topic><topic>Heat</topic><topic>heat tracer</topic><topic>Heat transport</topic><topic>hyporheic zone</topic><topic>Identification</topic><topic>Infinity</topic><topic>Information dissemination</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimators</topic><topic>maximum‐likelihood estimator</topic><topic>Methods</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Rivers</topic><topic>Sensors</topic><topic>Streambeds</topic><topic>Temperature</topic><topic>Temperature data</topic><topic>Temperature effects</topic><topic>Thermal diffusivity</topic><topic>Time series</topic><topic>Tracers</topic><topic>Transport</topic><topic>Vertical flow</topic><topic>Vertical mixing</topic><topic>Water</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneidewind, U.</creatorcontrib><creatorcontrib>van Berkel, M.</creatorcontrib><creatorcontrib>Anibas, C.</creatorcontrib><creatorcontrib>Vandersteen, G.</creatorcontrib><creatorcontrib>Schmidt, C.</creatorcontrib><creatorcontrib>Joris, I.</creatorcontrib><creatorcontrib>Seuntjens, P.</creatorcontrib><creatorcontrib>Batelaan, O.</creatorcontrib><creatorcontrib>Zwart, H. J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneidewind, U.</au><au>van Berkel, M.</au><au>Anibas, C.</au><au>Vandersteen, G.</au><au>Schmidt, C.</au><au>Joris, I.</au><au>Seuntjens, P.</au><au>Batelaan, O.</au><au>Zwart, H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer</atitle><jtitle>Water resources research</jtitle><date>2016-08</date><risdate>2016</risdate><volume>52</volume><issue>8</issue><spage>6596</spage><epage>6610</epage><pages>6596-6610</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We introduce LPMLE3, a new 1‐D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1‐D approaches it does not assume a semi‐infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature‐time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature‐time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum‐likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1‐D methods.
Key Points:
1‐D method for studying water flow in the streambed using heat as a tracer
Method is applicable for layered streambeds and results can be used in further analyses to delineate nonvertical water flow
Method provides parameter uncertainties and model quality information</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2015WR017453</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2016-08, Vol.52 (8), p.6596-6610 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827905237 |
source | Wiley-Blackwell AGU Digital Library |
subjects | Boundary conditions Components Computer simulation Differential equations Diffusion coefficients Diffusivity Frequency dependence frequency domain Frequency response groundwater‐surface water interaction Heat heat tracer Heat transport hyporheic zone Identification Infinity Information dissemination Mathematical analysis Mathematical models Maximum likelihood estimators maximum‐likelihood estimator Methods Noise Noise prediction Numerical models Parameter estimation Partial differential equations Rivers Sensors Streambeds Temperature Temperature data Temperature effects Thermal diffusivity Time series Tracers Transport Vertical flow Vertical mixing Water Water flow |
title | LPMLE3: A novel 1‐D approach to study water flow in streambeds using heat as a tracer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LPMLE3:%20A%20novel%201%E2%80%90D%20approach%20to%20study%20water%20flow%20in%20streambeds%20using%20heat%20as%20a%20tracer&rft.jtitle=Water%20resources%20research&rft.au=Schneidewind,%20U.&rft.date=2016-08&rft.volume=52&rft.issue=8&rft.spage=6596&rft.epage=6610&rft.pages=6596-6610&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2015WR017453&rft_dat=%3Cproquest_cross%3E1908419274%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4670-a664565ccccc3beba0d624ce50b569b34b0c26af069f15545ae01f24963e72953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1908419274&rft_id=info:pmid/&rfr_iscdi=true |