Loading…
Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex form...
Saved in:
Published in: | Soft matter 2016-01, Vol.12 (39), p.8186-8194 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3 |
container_end_page | 8194 |
container_issue | 39 |
container_start_page | 8186 |
container_title | Soft matter |
container_volume | 12 |
creator | Zhang, Xuzhu Poniewierski, Andrzej Jeli ska, Aldona Zago d on, Anna Wisniewska, Agnieszka Hou, Sen Ho yst, Robert |
description | The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C
12
E
8
(neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
The equilibrium and rate constants for dye-micelle complex formation are determined by FCS, DLS and TDA. |
doi_str_mv | 10.1039/c6sm01791f |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827909517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845797387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3</originalsourceid><addsrcrecordid>eNqNkstu1TAQhiNERS-wYQ_yElU6xY6dOFmiQwtIRSwoErvIscfFyJfUdiTyYjxfnaYctl3NWPPNP2P_rqrXBF8QTPv3sk0OE94T_aw6IZyxXdux7vkhpz-Pq9OUfmNMO0baF9VxzTlhlPcn1d-PkCE640U2waOgEdzNxpoxmtkh4RWKIgOSwacsfE5Ih1hObrLwZ83d1jcuSNs5REgSvFz5GMFutTSBzDEkGaYFpXkqrQ58BrV2qcULZySy5vZXRkmKXNYx_vZh9I1YbBmnTJGIadUSXtglmfSyOtLCJnj1GM-qH1eXN_vPu-tvn77sP1zvJGNd3jFVA2kBaqWF5hqPHVWEadEQLHoiR6h7zQBLoTCtuSRSj1JSzmRLGCuBnlXvNt0phrsZUh6cKVe0VngIcxpIxxrec9rxJ6C0Ybhtmu4JaM173DdkVT3fUFleMEXQwxSNE3EZCB5W94d9-_3rg_tXBX77qDuPDtQB_Wd3Ad5sQEzyUP3_feg9OkK7LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827909517</pqid></control><display><type>article</type><title>Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis</title><source>Royal Society of Chemistry</source><creator>Zhang, Xuzhu ; Poniewierski, Andrzej ; Jeli ska, Aldona ; Zago d on, Anna ; Wisniewska, Agnieszka ; Hou, Sen ; Ho yst, Robert</creator><creatorcontrib>Zhang, Xuzhu ; Poniewierski, Andrzej ; Jeli ska, Aldona ; Zago d on, Anna ; Wisniewska, Agnieszka ; Hou, Sen ; Ho yst, Robert</creatorcontrib><description>The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C
12
E
8
(neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
The equilibrium and rate constants for dye-micelle complex formation are determined by FCS, DLS and TDA.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c6sm01791f</identifier><identifier>PMID: 27714379</identifier><language>eng</language><publisher>England</publisher><subject>Chemical equilibrium ; Complex formation ; Dispersion ; Dynamical systems ; Fluorescence ; Light scattering ; Rate constants ; Sodium dodecyl sulfate</subject><ispartof>Soft matter, 2016-01, Vol.12 (39), p.8186-8194</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3</citedby><cites>FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27714379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xuzhu</creatorcontrib><creatorcontrib>Poniewierski, Andrzej</creatorcontrib><creatorcontrib>Jeli ska, Aldona</creatorcontrib><creatorcontrib>Zago d on, Anna</creatorcontrib><creatorcontrib>Wisniewska, Agnieszka</creatorcontrib><creatorcontrib>Hou, Sen</creatorcontrib><creatorcontrib>Ho yst, Robert</creatorcontrib><title>Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C
12
E
8
(neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
The equilibrium and rate constants for dye-micelle complex formation are determined by FCS, DLS and TDA.</description><subject>Chemical equilibrium</subject><subject>Complex formation</subject><subject>Dispersion</subject><subject>Dynamical systems</subject><subject>Fluorescence</subject><subject>Light scattering</subject><subject>Rate constants</subject><subject>Sodium dodecyl sulfate</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkstu1TAQhiNERS-wYQ_yElU6xY6dOFmiQwtIRSwoErvIscfFyJfUdiTyYjxfnaYctl3NWPPNP2P_rqrXBF8QTPv3sk0OE94T_aw6IZyxXdux7vkhpz-Pq9OUfmNMO0baF9VxzTlhlPcn1d-PkCE640U2waOgEdzNxpoxmtkh4RWKIgOSwacsfE5Ih1hObrLwZ83d1jcuSNs5REgSvFz5GMFutTSBzDEkGaYFpXkqrQ58BrV2qcULZySy5vZXRkmKXNYx_vZh9I1YbBmnTJGIadUSXtglmfSyOtLCJnj1GM-qH1eXN_vPu-tvn77sP1zvJGNd3jFVA2kBaqWF5hqPHVWEadEQLHoiR6h7zQBLoTCtuSRSj1JSzmRLGCuBnlXvNt0phrsZUh6cKVe0VngIcxpIxxrec9rxJ6C0Ybhtmu4JaM173DdkVT3fUFleMEXQwxSNE3EZCB5W94d9-_3rg_tXBX77qDuPDtQB_Wd3Ad5sQEzyUP3_feg9OkK7LA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhang, Xuzhu</creator><creator>Poniewierski, Andrzej</creator><creator>Jeli ska, Aldona</creator><creator>Zago d on, Anna</creator><creator>Wisniewska, Agnieszka</creator><creator>Hou, Sen</creator><creator>Ho yst, Robert</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis</title><author>Zhang, Xuzhu ; Poniewierski, Andrzej ; Jeli ska, Aldona ; Zago d on, Anna ; Wisniewska, Agnieszka ; Hou, Sen ; Ho yst, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical equilibrium</topic><topic>Complex formation</topic><topic>Dispersion</topic><topic>Dynamical systems</topic><topic>Fluorescence</topic><topic>Light scattering</topic><topic>Rate constants</topic><topic>Sodium dodecyl sulfate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuzhu</creatorcontrib><creatorcontrib>Poniewierski, Andrzej</creatorcontrib><creatorcontrib>Jeli ska, Aldona</creatorcontrib><creatorcontrib>Zago d on, Anna</creatorcontrib><creatorcontrib>Wisniewska, Agnieszka</creatorcontrib><creatorcontrib>Hou, Sen</creatorcontrib><creatorcontrib>Ho yst, Robert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuzhu</au><au>Poniewierski, Andrzej</au><au>Jeli ska, Aldona</au><au>Zago d on, Anna</au><au>Wisniewska, Agnieszka</au><au>Hou, Sen</au><au>Ho yst, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>39</issue><spage>8186</spage><epage>8194</epage><pages>8186-8194</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C
12
E
8
(neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
The equilibrium and rate constants for dye-micelle complex formation are determined by FCS, DLS and TDA.</abstract><cop>England</cop><pmid>27714379</pmid><doi>10.1039/c6sm01791f</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2016-01, Vol.12 (39), p.8186-8194 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827909517 |
source | Royal Society of Chemistry |
subjects | Chemical equilibrium Complex formation Dispersion Dynamical systems Fluorescence Light scattering Rate constants Sodium dodecyl sulfate |
title | Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20equilibrium%20and%20rate%20constants%20for%20complex%20formation%20by%20fluorescence%20correlation%20spectroscopy%20supplemented%20by%20dynamic%20light%20scattering%20and%20Taylor%20dispersion%20analysis&rft.jtitle=Soft%20matter&rft.au=Zhang,%20Xuzhu&rft.date=2016-01-01&rft.volume=12&rft.issue=39&rft.spage=8186&rft.epage=8194&rft.pages=8186-8194&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c6sm01791f&rft_dat=%3Cproquest_rsc_p%3E1845797387%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1827909517&rft_id=info:pmid/27714379&rfr_iscdi=true |