Loading…

Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis

The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex form...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2016-01, Vol.12 (39), p.8186-8194
Main Authors: Zhang, Xuzhu, Poniewierski, Andrzej, Jeli ska, Aldona, Zago d on, Anna, Wisniewska, Agnieszka, Hou, Sen, Ho yst, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3
cites cdi_FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3
container_end_page 8194
container_issue 39
container_start_page 8186
container_title Soft matter
container_volume 12
creator Zhang, Xuzhu
Poniewierski, Andrzej
Jeli ska, Aldona
Zago d on, Anna
Wisniewska, Agnieszka
Hou, Sen
Ho yst, Robert
description The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data. The equilibrium and rate constants for dye-micelle complex formation are determined by FCS, DLS and TDA.
doi_str_mv 10.1039/c6sm01791f
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827909517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845797387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3</originalsourceid><addsrcrecordid>eNqNkstu1TAQhiNERS-wYQ_yElU6xY6dOFmiQwtIRSwoErvIscfFyJfUdiTyYjxfnaYctl3NWPPNP2P_rqrXBF8QTPv3sk0OE94T_aw6IZyxXdux7vkhpz-Pq9OUfmNMO0baF9VxzTlhlPcn1d-PkCE640U2waOgEdzNxpoxmtkh4RWKIgOSwacsfE5Ih1hObrLwZ83d1jcuSNs5REgSvFz5GMFutTSBzDEkGaYFpXkqrQ58BrV2qcULZySy5vZXRkmKXNYx_vZh9I1YbBmnTJGIadUSXtglmfSyOtLCJnj1GM-qH1eXN_vPu-tvn77sP1zvJGNd3jFVA2kBaqWF5hqPHVWEadEQLHoiR6h7zQBLoTCtuSRSj1JSzmRLGCuBnlXvNt0phrsZUh6cKVe0VngIcxpIxxrec9rxJ6C0Ybhtmu4JaM173DdkVT3fUFleMEXQwxSNE3EZCB5W94d9-_3rg_tXBX77qDuPDtQB_Wd3Ad5sQEzyUP3_feg9OkK7LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827909517</pqid></control><display><type>article</type><title>Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis</title><source>Royal Society of Chemistry</source><creator>Zhang, Xuzhu ; Poniewierski, Andrzej ; Jeli ska, Aldona ; Zago d on, Anna ; Wisniewska, Agnieszka ; Hou, Sen ; Ho yst, Robert</creator><creatorcontrib>Zhang, Xuzhu ; Poniewierski, Andrzej ; Jeli ska, Aldona ; Zago d on, Anna ; Wisniewska, Agnieszka ; Hou, Sen ; Ho yst, Robert</creatorcontrib><description>The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data. The equilibrium and rate constants for dye-micelle complex formation are determined by FCS, DLS and TDA.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c6sm01791f</identifier><identifier>PMID: 27714379</identifier><language>eng</language><publisher>England</publisher><subject>Chemical equilibrium ; Complex formation ; Dispersion ; Dynamical systems ; Fluorescence ; Light scattering ; Rate constants ; Sodium dodecyl sulfate</subject><ispartof>Soft matter, 2016-01, Vol.12 (39), p.8186-8194</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3</citedby><cites>FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27714379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xuzhu</creatorcontrib><creatorcontrib>Poniewierski, Andrzej</creatorcontrib><creatorcontrib>Jeli ska, Aldona</creatorcontrib><creatorcontrib>Zago d on, Anna</creatorcontrib><creatorcontrib>Wisniewska, Agnieszka</creatorcontrib><creatorcontrib>Hou, Sen</creatorcontrib><creatorcontrib>Ho yst, Robert</creatorcontrib><title>Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data. The equilibrium and rate constants for dye-micelle complex formation are determined by FCS, DLS and TDA.</description><subject>Chemical equilibrium</subject><subject>Complex formation</subject><subject>Dispersion</subject><subject>Dynamical systems</subject><subject>Fluorescence</subject><subject>Light scattering</subject><subject>Rate constants</subject><subject>Sodium dodecyl sulfate</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkstu1TAQhiNERS-wYQ_yElU6xY6dOFmiQwtIRSwoErvIscfFyJfUdiTyYjxfnaYctl3NWPPNP2P_rqrXBF8QTPv3sk0OE94T_aw6IZyxXdux7vkhpz-Pq9OUfmNMO0baF9VxzTlhlPcn1d-PkCE640U2waOgEdzNxpoxmtkh4RWKIgOSwacsfE5Ih1hObrLwZ83d1jcuSNs5REgSvFz5GMFutTSBzDEkGaYFpXkqrQ58BrV2qcULZySy5vZXRkmKXNYx_vZh9I1YbBmnTJGIadUSXtglmfSyOtLCJnj1GM-qH1eXN_vPu-tvn77sP1zvJGNd3jFVA2kBaqWF5hqPHVWEadEQLHoiR6h7zQBLoTCtuSRSj1JSzmRLGCuBnlXvNt0phrsZUh6cKVe0VngIcxpIxxrec9rxJ6C0Ybhtmu4JaM173DdkVT3fUFleMEXQwxSNE3EZCB5W94d9-_3rg_tXBX77qDuPDtQB_Wd3Ad5sQEzyUP3_feg9OkK7LA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhang, Xuzhu</creator><creator>Poniewierski, Andrzej</creator><creator>Jeli ska, Aldona</creator><creator>Zago d on, Anna</creator><creator>Wisniewska, Agnieszka</creator><creator>Hou, Sen</creator><creator>Ho yst, Robert</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis</title><author>Zhang, Xuzhu ; Poniewierski, Andrzej ; Jeli ska, Aldona ; Zago d on, Anna ; Wisniewska, Agnieszka ; Hou, Sen ; Ho yst, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical equilibrium</topic><topic>Complex formation</topic><topic>Dispersion</topic><topic>Dynamical systems</topic><topic>Fluorescence</topic><topic>Light scattering</topic><topic>Rate constants</topic><topic>Sodium dodecyl sulfate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuzhu</creatorcontrib><creatorcontrib>Poniewierski, Andrzej</creatorcontrib><creatorcontrib>Jeli ska, Aldona</creatorcontrib><creatorcontrib>Zago d on, Anna</creatorcontrib><creatorcontrib>Wisniewska, Agnieszka</creatorcontrib><creatorcontrib>Hou, Sen</creatorcontrib><creatorcontrib>Ho yst, Robert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xuzhu</au><au>Poniewierski, Andrzej</au><au>Jeli ska, Aldona</au><au>Zago d on, Anna</au><au>Wisniewska, Agnieszka</au><au>Hou, Sen</au><au>Ho yst, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>39</issue><spage>8186</spage><epage>8194</epage><pages>8186-8194</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data. The equilibrium and rate constants for dye-micelle complex formation are determined by FCS, DLS and TDA.</abstract><cop>England</cop><pmid>27714379</pmid><doi>10.1039/c6sm01791f</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2016-01, Vol.12 (39), p.8186-8194
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1827909517
source Royal Society of Chemistry
subjects Chemical equilibrium
Complex formation
Dispersion
Dynamical systems
Fluorescence
Light scattering
Rate constants
Sodium dodecyl sulfate
title Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20equilibrium%20and%20rate%20constants%20for%20complex%20formation%20by%20fluorescence%20correlation%20spectroscopy%20supplemented%20by%20dynamic%20light%20scattering%20and%20Taylor%20dispersion%20analysis&rft.jtitle=Soft%20matter&rft.au=Zhang,%20Xuzhu&rft.date=2016-01-01&rft.volume=12&rft.issue=39&rft.spage=8186&rft.epage=8194&rft.pages=8186-8194&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c6sm01791f&rft_dat=%3Cproquest_rsc_p%3E1845797387%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-4d2e16ee2dfaf7f0b83d14fa510a91cbe29f4e0cad0327c1cfbcc374c614474c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1827909517&rft_id=info:pmid/27714379&rfr_iscdi=true