Loading…

Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis

Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at continental scale, it is hard to evaluate the impacts of urbanization on regional clima...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Earth sciences 2016-09, Vol.59 (9), p.1720-1737
Main Authors: Kuang, WenHui, Chen, LiJun, Liu, JiYuan, Xiang, WeiNing, Chi, WenFeng, Lu, DengSheng, Yang, TianRong, Pan, Tao, Liu, AiLin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial surfaces, characterized with intensive land-use changes and complex landscape structures, are important indicators of human impacts on terrestrial ecosystems. Without high-resolution land-cover data at continental scale, it is hard to evaluate the impacts of urbanization on regional climate, ecosystem processes and global environment. This study constructed a hierarchical classification system for artificial surfaces, promoted a remote sensing method to retrieve subpixel components of artificial surfaces from 30-m resolution satellite imageries (GlobeLand30) and developed a series of data products of high-precision urban built-up areas including impervious surface and vegetation cover in Asia in 2010. Our assessment, based on multisource data and expert knowledge, showed that the overall accuracy of classification was 90.79%. The mean relative error for the impervious surface components of cities was 0.87. The local error of the extracted information was closely related to the heterogeneity of urban buildings and vegetation in different climate zones. According to our results, the urban built-up area was 18.18×10^4 km2, accounting for 0.59% of the total land surface areas in Asia; urban impervious surfaces were 11.65×10^4 km2, accounting for 64.09% of the total urban built-up area in Asia. Vegetation and bare soils accounted for 34.56% of the urban built-up areas. There were three gradients: a concentrated distribution, a scattered distribution and an indeterminate distribution from east to west in terms of spatial pattern of urban impervious surfaces. China, India and Japan ranked as the top three countries with the largest impervious surface areas, which respectively accounted for 32.77%, 16.10% and 11.93% of the urban impervious surface area of Asia. We found the proportions of impervious surface and vegetation cover within urban built-up areas were closely related to the economic development degree of the country and regional climate envi- ronment. Built-up areas in developed countries had relatively low impervious surface and high public green vegetation cover, with 50-60% urban impervious surfaces in Japan, South Korea and Singapore. In comparison, the proportion of urban impervious surfaces in developing countries is approaching or exceeding 80% in Asia. In general, the composition and spatial patterns of built-up areas reflected population aggregation and economic development level as well as their impacts on the health of the environmen
ISSN:1674-7313
1869-1897
DOI:10.1007/s11430-016-5295-7