Loading…
Adapting Douglas-fir forestry in Central Europe: evaluation, application, and uncertainty analysis of a genetically based model
Recommendations on suitable seed sources for reforestation are usually model based and include uncertainties arising from model assumptions, parameter estimation, and future climate scenarios. Due to the long-lived nature of forests, such uncertainties need to be considered when developing guidance...
Saved in:
Published in: | European journal of forest research 2016-10, Vol.135 (5), p.919-936 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recommendations on suitable seed sources for reforestation are usually model based and include uncertainties arising from model assumptions, parameter estimation, and future climate scenarios. Due to the long-lived nature of forests, such uncertainties need to be considered when developing guidance for managers and policy makers. We evaluate the uncertainties and apply our recently developed genetically based models, Universal Response Functions (URFs) in Austria and Germany. The URFs predict growth performance (dominant height and basal area at age 24) of Douglas-fir (
Pseudotsuga menziesii
[Mirbel] Franco) populations, as a function of both environmental and genetic factors. We evaluated the URFs by comparing the predicted height growth performances with observations from independent provenance trial data across Europe. Also, the sensitivity of the URF variables and the overall model uncertainty were estimated and compared to the uncertainty due to climate change projections. Model evaluation suggests that the URFs perform better in Central and Southeastern Europe compared to maritime Western Europe. Summer drought and mean annual temperature of planting sites were the most sensitive variables of the models, whereas the mean annual temperature of seed origin was the least sensitive. Model uncertainty increased with mean annual temperature of the planting site. Uncertainty due to projected future climate was found to be higher than the model uncertainty. The URFs predicted that provenance regions of southwest Germany and southeast Austria below 1500 m altitude will be suitable, whereas Pannonian east of Austria will become less suitable for growing Douglas-fir in future. Current seed stands in North America providing planting materials for Europe under the legal framework of the Organization for Economic Cooperation and Development shall continue to provide the most suitable seed material also in the future. |
---|---|
ISSN: | 1612-4669 1612-4677 |
DOI: | 10.1007/s10342-016-0984-5 |