Loading…
Insights into the functionality and stability of designer cellulosomes at elevated temperatures
Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components a...
Saved in:
Published in: | Applied microbiology and biotechnology 2016-10, Vol.100 (20), p.8731-8743 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173 |
---|---|
cites | cdi_FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173 |
container_end_page | 8743 |
container_issue | 20 |
container_start_page | 8731 |
container_title | Applied microbiology and biotechnology |
container_volume | 100 |
creator | Galanopoulou, Anastasia P. Moraïs, Sarah Georgoulis, Anastasios Morag, Ely Bayer, Edward A. Hatzinikolaou, Dimitris G. |
description | Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium
Clostridium thermocellum
. The scaffoldin was combined with four thermophilic enzymes from
Geobacillus
and
Caldicellulosiruptor
species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications. |
doi_str_mv | 10.1007/s00253-016-7594-5 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827917527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470731329</galeid><sourcerecordid>A470731329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoNY7Fr9Ad5IwJt6MTVfk2QuS6m6UCj4cR2ymTPblJlkTTJi_72Zbv1YUZBchJzzvC_nhBehF5ScUULUm0wIa3lDqGxU24mmfYRWVHDWEEnFY7QiVLVLRx-jpznfEkKZlvIJOmaKEUVFu0JmHbLf3pSMfSgRlxvAwxxc8THY0Zc7bEOPc7Ebf_-KA-6hCgIk7GAc5zHmOEHGtmAY4ast0OMC0w6SLXOC_AwdDXbM8PzhPkGf315-unjfXF2_W1-cXzWuFbw0erDKtZJsnBxUp5gWnDppu14w6mjtMN73IBQFrQeupd7wTjshlbYCOqr4CTrd--5S_DJDLmbyeZnQBohzNlQzVbmW_RfKO1Jn4BV99Qd6G-dUf-aeYtVTC_KL2toRjA9DLMm6xdScC0UUp5x1lTr7C1VPD5N3McDga_1A8PpAUJkC38rWzjmb9ccPhyzdsy7FnBMMZpf8ZNOdocQsWTH7rJiaFbNkxbRV8_JhuXkzQf9T8SMcFWB7INdW2EL6bft_un4H1kLGcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822827840</pqid></control><display><type>article</type><title>Insights into the functionality and stability of designer cellulosomes at elevated temperatures</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Galanopoulou, Anastasia P. ; Moraïs, Sarah ; Georgoulis, Anastasios ; Morag, Ely ; Bayer, Edward A. ; Hatzinikolaou, Dimitris G.</creator><creatorcontrib>Galanopoulou, Anastasia P. ; Moraïs, Sarah ; Georgoulis, Anastasios ; Morag, Ely ; Bayer, Edward A. ; Hatzinikolaou, Dimitris G.</creatorcontrib><description>Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium
Clostridium thermocellum
. The scaffoldin was combined with four thermophilic enzymes from
Geobacillus
and
Caldicellulosiruptor
species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7594-5</identifier><identifier>PMID: 27207145</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Bacteria ; Biomass ; Biomedical and Life Sciences ; Biorefineries ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Caldicellulosiruptor ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cellulase ; Cellulose ; Cellulosomes - chemistry ; Cellulosomes - genetics ; Cellulosomes - metabolism ; Cellulosomes - radiation effects ; Chemical properties ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cloning ; Clostridium thermocellum ; Cohesins ; Enzyme kinetics ; Enzyme Stability ; Enzymes ; Firmicutes - genetics ; Geobacillus ; High temperature ; Hot Temperature ; Hydrolysis ; Life Sciences ; Lignin - metabolism ; Lignocellulose ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Observations ; Plasmids ; Proteins ; Refineries ; Stover ; Studies ; Temperature ; Thermal properties ; Zea mays - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2016-10, Vol.100 (20), p.8731-8743</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173</citedby><cites>FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1822827840/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1822827840?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27207145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galanopoulou, Anastasia P.</creatorcontrib><creatorcontrib>Moraïs, Sarah</creatorcontrib><creatorcontrib>Georgoulis, Anastasios</creatorcontrib><creatorcontrib>Morag, Ely</creatorcontrib><creatorcontrib>Bayer, Edward A.</creatorcontrib><creatorcontrib>Hatzinikolaou, Dimitris G.</creatorcontrib><title>Insights into the functionality and stability of designer cellulosomes at elevated temperatures</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium
Clostridium thermocellum
. The scaffoldin was combined with four thermophilic enzymes from
Geobacillus
and
Caldicellulosiruptor
species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.</description><subject>Analysis</subject><subject>Bacteria</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biorefineries</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Caldicellulosiruptor</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Cellulosomes - chemistry</subject><subject>Cellulosomes - genetics</subject><subject>Cellulosomes - metabolism</subject><subject>Cellulosomes - radiation effects</subject><subject>Chemical properties</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cloning</subject><subject>Clostridium thermocellum</subject><subject>Cohesins</subject><subject>Enzyme kinetics</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Firmicutes - genetics</subject><subject>Geobacillus</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Hydrolysis</subject><subject>Life Sciences</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Observations</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Refineries</subject><subject>Stover</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Zea mays - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkl1rFDEUhoNY7Fr9Ad5IwJt6MTVfk2QuS6m6UCj4cR2ymTPblJlkTTJi_72Zbv1YUZBchJzzvC_nhBehF5ScUULUm0wIa3lDqGxU24mmfYRWVHDWEEnFY7QiVLVLRx-jpznfEkKZlvIJOmaKEUVFu0JmHbLf3pSMfSgRlxvAwxxc8THY0Zc7bEOPc7Ebf_-KA-6hCgIk7GAc5zHmOEHGtmAY4ast0OMC0w6SLXOC_AwdDXbM8PzhPkGf315-unjfXF2_W1-cXzWuFbw0erDKtZJsnBxUp5gWnDppu14w6mjtMN73IBQFrQeupd7wTjshlbYCOqr4CTrd--5S_DJDLmbyeZnQBohzNlQzVbmW_RfKO1Jn4BV99Qd6G-dUf-aeYtVTC_KL2toRjA9DLMm6xdScC0UUp5x1lTr7C1VPD5N3McDga_1A8PpAUJkC38rWzjmb9ccPhyzdsy7FnBMMZpf8ZNOdocQsWTH7rJiaFbNkxbRV8_JhuXkzQf9T8SMcFWB7INdW2EL6bft_un4H1kLGcQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Galanopoulou, Anastasia P.</creator><creator>Moraïs, Sarah</creator><creator>Georgoulis, Anastasios</creator><creator>Morag, Ely</creator><creator>Bayer, Edward A.</creator><creator>Hatzinikolaou, Dimitris G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20161001</creationdate><title>Insights into the functionality and stability of designer cellulosomes at elevated temperatures</title><author>Galanopoulou, Anastasia P. ; Moraïs, Sarah ; Georgoulis, Anastasios ; Morag, Ely ; Bayer, Edward A. ; Hatzinikolaou, Dimitris G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Bacteria</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biorefineries</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Caldicellulosiruptor</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Cellulosomes - chemistry</topic><topic>Cellulosomes - genetics</topic><topic>Cellulosomes - metabolism</topic><topic>Cellulosomes - radiation effects</topic><topic>Chemical properties</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cloning</topic><topic>Clostridium thermocellum</topic><topic>Cohesins</topic><topic>Enzyme kinetics</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Firmicutes - genetics</topic><topic>Geobacillus</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Hydrolysis</topic><topic>Life Sciences</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Observations</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Refineries</topic><topic>Stover</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galanopoulou, Anastasia P.</creatorcontrib><creatorcontrib>Moraïs, Sarah</creatorcontrib><creatorcontrib>Georgoulis, Anastasios</creatorcontrib><creatorcontrib>Morag, Ely</creatorcontrib><creatorcontrib>Bayer, Edward A.</creatorcontrib><creatorcontrib>Hatzinikolaou, Dimitris G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galanopoulou, Anastasia P.</au><au>Moraïs, Sarah</au><au>Georgoulis, Anastasios</au><au>Morag, Ely</au><au>Bayer, Edward A.</au><au>Hatzinikolaou, Dimitris G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the functionality and stability of designer cellulosomes at elevated temperatures</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>100</volume><issue>20</issue><spage>8731</spage><epage>8743</epage><pages>8731-8743</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium
Clostridium thermocellum
. The scaffoldin was combined with four thermophilic enzymes from
Geobacillus
and
Caldicellulosiruptor
species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27207145</pmid><doi>10.1007/s00253-016-7594-5</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2016-10, Vol.100 (20), p.8731-8743 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827917527 |
source | ABI/INFORM Global; Springer Link |
subjects | Analysis Bacteria Biomass Biomedical and Life Sciences Biorefineries Biosynthesis Biotechnologically Relevant Enzymes and Proteins Biotechnology Caldicellulosiruptor Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cellulase Cellulose Cellulosomes - chemistry Cellulosomes - genetics Cellulosomes - metabolism Cellulosomes - radiation effects Chemical properties Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Cloning Clostridium thermocellum Cohesins Enzyme kinetics Enzyme Stability Enzymes Firmicutes - genetics Geobacillus High temperature Hot Temperature Hydrolysis Life Sciences Lignin - metabolism Lignocellulose Microbial Genetics and Genomics Microbiology Microorganisms Observations Plasmids Proteins Refineries Stover Studies Temperature Thermal properties Zea mays - metabolism |
title | Insights into the functionality and stability of designer cellulosomes at elevated temperatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20functionality%20and%20stability%20of%20designer%20cellulosomes%20at%20elevated%20temperatures&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Galanopoulou,%20Anastasia%20P.&rft.date=2016-10-01&rft.volume=100&rft.issue=20&rft.spage=8731&rft.epage=8743&rft.pages=8731-8743&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7594-5&rft_dat=%3Cgale_proqu%3EA470731329%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1822827840&rft_id=info:pmid/27207145&rft_galeid=A470731329&rfr_iscdi=true |