Loading…

Insights into the functionality and stability of designer cellulosomes at elevated temperatures

Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components a...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2016-10, Vol.100 (20), p.8731-8743
Main Authors: Galanopoulou, Anastasia P., Moraïs, Sarah, Georgoulis, Anastasios, Morag, Ely, Bayer, Edward A., Hatzinikolaou, Dimitris G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173
cites cdi_FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173
container_end_page 8743
container_issue 20
container_start_page 8731
container_title Applied microbiology and biotechnology
container_volume 100
creator Galanopoulou, Anastasia P.
Moraïs, Sarah
Georgoulis, Anastasios
Morag, Ely
Bayer, Edward A.
Hatzinikolaou, Dimitris G.
description Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium Clostridium thermocellum . The scaffoldin was combined with four thermophilic enzymes from Geobacillus and Caldicellulosiruptor species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.
doi_str_mv 10.1007/s00253-016-7594-5
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827917527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470731329</galeid><sourcerecordid>A470731329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoNY7Fr9Ad5IwJt6MTVfk2QuS6m6UCj4cR2ymTPblJlkTTJi_72Zbv1YUZBchJzzvC_nhBehF5ScUULUm0wIa3lDqGxU24mmfYRWVHDWEEnFY7QiVLVLRx-jpznfEkKZlvIJOmaKEUVFu0JmHbLf3pSMfSgRlxvAwxxc8THY0Zc7bEOPc7Ebf_-KA-6hCgIk7GAc5zHmOEHGtmAY4ast0OMC0w6SLXOC_AwdDXbM8PzhPkGf315-unjfXF2_W1-cXzWuFbw0erDKtZJsnBxUp5gWnDppu14w6mjtMN73IBQFrQeupd7wTjshlbYCOqr4CTrd--5S_DJDLmbyeZnQBohzNlQzVbmW_RfKO1Jn4BV99Qd6G-dUf-aeYtVTC_KL2toRjA9DLMm6xdScC0UUp5x1lTr7C1VPD5N3McDga_1A8PpAUJkC38rWzjmb9ccPhyzdsy7FnBMMZpf8ZNOdocQsWTH7rJiaFbNkxbRV8_JhuXkzQf9T8SMcFWB7INdW2EL6bft_un4H1kLGcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822827840</pqid></control><display><type>article</type><title>Insights into the functionality and stability of designer cellulosomes at elevated temperatures</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Galanopoulou, Anastasia P. ; Moraïs, Sarah ; Georgoulis, Anastasios ; Morag, Ely ; Bayer, Edward A. ; Hatzinikolaou, Dimitris G.</creator><creatorcontrib>Galanopoulou, Anastasia P. ; Moraïs, Sarah ; Georgoulis, Anastasios ; Morag, Ely ; Bayer, Edward A. ; Hatzinikolaou, Dimitris G.</creatorcontrib><description>Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium Clostridium thermocellum . The scaffoldin was combined with four thermophilic enzymes from Geobacillus and Caldicellulosiruptor species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7594-5</identifier><identifier>PMID: 27207145</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Bacteria ; Biomass ; Biomedical and Life Sciences ; Biorefineries ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Caldicellulosiruptor ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cellulase ; Cellulose ; Cellulosomes - chemistry ; Cellulosomes - genetics ; Cellulosomes - metabolism ; Cellulosomes - radiation effects ; Chemical properties ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cloning ; Clostridium thermocellum ; Cohesins ; Enzyme kinetics ; Enzyme Stability ; Enzymes ; Firmicutes - genetics ; Geobacillus ; High temperature ; Hot Temperature ; Hydrolysis ; Life Sciences ; Lignin - metabolism ; Lignocellulose ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Observations ; Plasmids ; Proteins ; Refineries ; Stover ; Studies ; Temperature ; Thermal properties ; Zea mays - metabolism</subject><ispartof>Applied microbiology and biotechnology, 2016-10, Vol.100 (20), p.8731-8743</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173</citedby><cites>FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1822827840/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1822827840?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27207145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galanopoulou, Anastasia P.</creatorcontrib><creatorcontrib>Moraïs, Sarah</creatorcontrib><creatorcontrib>Georgoulis, Anastasios</creatorcontrib><creatorcontrib>Morag, Ely</creatorcontrib><creatorcontrib>Bayer, Edward A.</creatorcontrib><creatorcontrib>Hatzinikolaou, Dimitris G.</creatorcontrib><title>Insights into the functionality and stability of designer cellulosomes at elevated temperatures</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium Clostridium thermocellum . The scaffoldin was combined with four thermophilic enzymes from Geobacillus and Caldicellulosiruptor species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.</description><subject>Analysis</subject><subject>Bacteria</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biorefineries</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Caldicellulosiruptor</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Cellulosomes - chemistry</subject><subject>Cellulosomes - genetics</subject><subject>Cellulosomes - metabolism</subject><subject>Cellulosomes - radiation effects</subject><subject>Chemical properties</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cloning</subject><subject>Clostridium thermocellum</subject><subject>Cohesins</subject><subject>Enzyme kinetics</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Firmicutes - genetics</subject><subject>Geobacillus</subject><subject>High temperature</subject><subject>Hot Temperature</subject><subject>Hydrolysis</subject><subject>Life Sciences</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Observations</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Refineries</subject><subject>Stover</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>Zea mays - metabolism</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkl1rFDEUhoNY7Fr9Ad5IwJt6MTVfk2QuS6m6UCj4cR2ymTPblJlkTTJi_72Zbv1YUZBchJzzvC_nhBehF5ScUULUm0wIa3lDqGxU24mmfYRWVHDWEEnFY7QiVLVLRx-jpznfEkKZlvIJOmaKEUVFu0JmHbLf3pSMfSgRlxvAwxxc8THY0Zc7bEOPc7Ebf_-KA-6hCgIk7GAc5zHmOEHGtmAY4ast0OMC0w6SLXOC_AwdDXbM8PzhPkGf315-unjfXF2_W1-cXzWuFbw0erDKtZJsnBxUp5gWnDppu14w6mjtMN73IBQFrQeupd7wTjshlbYCOqr4CTrd--5S_DJDLmbyeZnQBohzNlQzVbmW_RfKO1Jn4BV99Qd6G-dUf-aeYtVTC_KL2toRjA9DLMm6xdScC0UUp5x1lTr7C1VPD5N3McDga_1A8PpAUJkC38rWzjmb9ccPhyzdsy7FnBMMZpf8ZNOdocQsWTH7rJiaFbNkxbRV8_JhuXkzQf9T8SMcFWB7INdW2EL6bft_un4H1kLGcQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Galanopoulou, Anastasia P.</creator><creator>Moraïs, Sarah</creator><creator>Georgoulis, Anastasios</creator><creator>Morag, Ely</creator><creator>Bayer, Edward A.</creator><creator>Hatzinikolaou, Dimitris G.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20161001</creationdate><title>Insights into the functionality and stability of designer cellulosomes at elevated temperatures</title><author>Galanopoulou, Anastasia P. ; Moraïs, Sarah ; Georgoulis, Anastasios ; Morag, Ely ; Bayer, Edward A. ; Hatzinikolaou, Dimitris G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Bacteria</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biorefineries</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Caldicellulosiruptor</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Cellulosomes - chemistry</topic><topic>Cellulosomes - genetics</topic><topic>Cellulosomes - metabolism</topic><topic>Cellulosomes - radiation effects</topic><topic>Chemical properties</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cloning</topic><topic>Clostridium thermocellum</topic><topic>Cohesins</topic><topic>Enzyme kinetics</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Firmicutes - genetics</topic><topic>Geobacillus</topic><topic>High temperature</topic><topic>Hot Temperature</topic><topic>Hydrolysis</topic><topic>Life Sciences</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Observations</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Refineries</topic><topic>Stover</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galanopoulou, Anastasia P.</creatorcontrib><creatorcontrib>Moraïs, Sarah</creatorcontrib><creatorcontrib>Georgoulis, Anastasios</creatorcontrib><creatorcontrib>Morag, Ely</creatorcontrib><creatorcontrib>Bayer, Edward A.</creatorcontrib><creatorcontrib>Hatzinikolaou, Dimitris G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galanopoulou, Anastasia P.</au><au>Moraïs, Sarah</au><au>Georgoulis, Anastasios</au><au>Morag, Ely</au><au>Bayer, Edward A.</au><au>Hatzinikolaou, Dimitris G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the functionality and stability of designer cellulosomes at elevated temperatures</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>100</volume><issue>20</issue><spage>8731</spage><epage>8743</epage><pages>8731-8743</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Enzymatic breakdown of lignocellulose is a major limiting step in second generation biorefineries. Assembly of the necessary activities into designer cellulosomes increases the productivity of this step by enhancing enzyme synergy through the proximity effect. However, most cellulosomal components are obtained from mesophilic microorganisms, limiting the applications to temperatures up to 50 °C. We hypothesized that a scaffoldin, comprising modular components of mainly mesophilic origin, can function at higher temperatures when combined with thermophilic enzymes, and the resulting designer cellulosomes could be employed in higher temperature reactions. For this purpose, we used a tetravalent scaffoldin constituted of three cohesins of mesophilic origin as well as a cohesin and cellulose-binding module derived from the thermophilic bacterium Clostridium thermocellum . The scaffoldin was combined with four thermophilic enzymes from Geobacillus and Caldicellulosiruptor species, each fused with a dockerin whose specificity matched one of the cohesins. We initially verified that the biochemical properties and thermal stability of the resulting chimeric enzymes were not affected by the presence of the mesophilic dockerins. Then we examined the stability of the individual single-enzyme-scaffoldin complexes and the full tetravalent cellulosome showing that all complexes are stable and functional for at least 6 h at 60 °C. Finally, within this time frame and conditions, the full complex appeared over 50 % more efficient in the hydrolysis of corn stover compared to the free enzymes. Overall, the results support the utilization of scaffoldin components of mesophilic origin at relatively high temperatures and provide a framework for the production of designer cellulosomes suitable for high temperature biorefinery applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27207145</pmid><doi>10.1007/s00253-016-7594-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2016-10, Vol.100 (20), p.8731-8743
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1827917527
source ABI/INFORM Global; Springer Link
subjects Analysis
Bacteria
Biomass
Biomedical and Life Sciences
Biorefineries
Biosynthesis
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Caldicellulosiruptor
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cellulase
Cellulose
Cellulosomes - chemistry
Cellulosomes - genetics
Cellulosomes - metabolism
Cellulosomes - radiation effects
Chemical properties
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Cloning
Clostridium thermocellum
Cohesins
Enzyme kinetics
Enzyme Stability
Enzymes
Firmicutes - genetics
Geobacillus
High temperature
Hot Temperature
Hydrolysis
Life Sciences
Lignin - metabolism
Lignocellulose
Microbial Genetics and Genomics
Microbiology
Microorganisms
Observations
Plasmids
Proteins
Refineries
Stover
Studies
Temperature
Thermal properties
Zea mays - metabolism
title Insights into the functionality and stability of designer cellulosomes at elevated temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20functionality%20and%20stability%20of%20designer%20cellulosomes%20at%20elevated%20temperatures&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Galanopoulou,%20Anastasia%20P.&rft.date=2016-10-01&rft.volume=100&rft.issue=20&rft.spage=8731&rft.epage=8743&rft.pages=8731-8743&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7594-5&rft_dat=%3Cgale_proqu%3EA470731329%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-8fa7c560bc6f79728431c6a9d421c1c5623dde471e88f3868b398c4678a4e9173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1822827840&rft_id=info:pmid/27207145&rft_galeid=A470731329&rfr_iscdi=true