Loading…
Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression
Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC...
Saved in:
Published in: | Clinical cancer research 2016-09, Vol.22 (17), p.4391-4404 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3 |
container_end_page | 4404 |
container_issue | 17 |
container_start_page | 4391 |
container_title | Clinical cancer research |
container_volume | 22 |
creator | Evageliou, Nicholas F Haber, Michelle Vu, Annette Laetsch, Theodore W Murray, Jayne Gamble, Laura D Cheng, Ngan Ching Liu, Kangning Reese, Megan Corrigan, Kelly A Ziegler, David S Webber, Hannah Hayes, Candice S Pawel, Bruce Marshall, Glenn M Zhao, Huaqing Gilmour, Susan K Norris, Murray D Hogarty, Michael D |
description | Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma.
We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity.
An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance.
Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR. |
doi_str_mv | 10.1158/1078-0432.CCR-15-2539 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827922370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827922370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwCaAs2aR47Dh2llXEo1JFK9S95SROa5TExU4W_XsctWWNZjEP3TszOgg9Ap4DMPECmIsYJ5TM8_wrBhYTRrMrNAXGeExJyq5DfdFM0J333xhDAji5RRPCMRABMEXrjW2OqjWdjhZdr3a2M76Ptnvt1MFoHy27vSlMH33qwdmiUb63rQpT0xvVG9tFqquijbM7p70P_T26qVXj9cM5z9D27XWbf8Sr9fsyX6zikoqsj1VCyiTjGZQs_FthkXEidFIngglaMgoAPBMUskJUNVchalWrEiqWMlVrOkPPp7UHZ38G7XvZGl_qplGdtoOXIAjPCKEc_0MKaUqBMB6k7CQtnfXe6VoenGmVO0rAcqQuR6JyJCoDdQlMjtSD7-l8YihaXf25LpjpL-CEfVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816631257</pqid></control><display><type>article</type><title>Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression</title><source>Freely Accessible Science Journals</source><creator>Evageliou, Nicholas F ; Haber, Michelle ; Vu, Annette ; Laetsch, Theodore W ; Murray, Jayne ; Gamble, Laura D ; Cheng, Ngan Ching ; Liu, Kangning ; Reese, Megan ; Corrigan, Kelly A ; Ziegler, David S ; Webber, Hannah ; Hayes, Candice S ; Pawel, Bruce ; Marshall, Glenn M ; Zhao, Huaqing ; Gilmour, Susan K ; Norris, Murray D ; Hogarty, Michael D</creator><creatorcontrib>Evageliou, Nicholas F ; Haber, Michelle ; Vu, Annette ; Laetsch, Theodore W ; Murray, Jayne ; Gamble, Laura D ; Cheng, Ngan Ching ; Liu, Kangning ; Reese, Megan ; Corrigan, Kelly A ; Ziegler, David S ; Webber, Hannah ; Hayes, Candice S ; Pawel, Bruce ; Marshall, Glenn M ; Zhao, Huaqing ; Gilmour, Susan K ; Norris, Murray D ; Hogarty, Michael D</creatorcontrib><description>Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma.
We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity.
An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance.
Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-15-2539</identifier><identifier>PMID: 27012811</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Celecoxib - pharmacology ; Cell Line, Tumor ; Cell Transformation, Neoplastic - drug effects ; Disease Models, Animal ; Disease Progression ; Drug Evaluation, Preclinical ; Drug Synergism ; Eflornithine - pharmacology ; Genes, myc ; Homeostasis - drug effects ; Humans ; Mice ; Mice, Transgenic ; Neuroblastoma - drug therapy ; Neuroblastoma - etiology ; Neuroblastoma - mortality ; Neuroblastoma - pathology ; Oncogene Proteins - genetics ; Oncogene Proteins - metabolism ; Polyamines - antagonists & inhibitors ; Polyamines - metabolism ; Treatment Outcome ; Xenograft Model Antitumor Assays</subject><ispartof>Clinical cancer research, 2016-09, Vol.22 (17), p.4391-4404</ispartof><rights>2016 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3</citedby><cites>FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27012811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evageliou, Nicholas F</creatorcontrib><creatorcontrib>Haber, Michelle</creatorcontrib><creatorcontrib>Vu, Annette</creatorcontrib><creatorcontrib>Laetsch, Theodore W</creatorcontrib><creatorcontrib>Murray, Jayne</creatorcontrib><creatorcontrib>Gamble, Laura D</creatorcontrib><creatorcontrib>Cheng, Ngan Ching</creatorcontrib><creatorcontrib>Liu, Kangning</creatorcontrib><creatorcontrib>Reese, Megan</creatorcontrib><creatorcontrib>Corrigan, Kelly A</creatorcontrib><creatorcontrib>Ziegler, David S</creatorcontrib><creatorcontrib>Webber, Hannah</creatorcontrib><creatorcontrib>Hayes, Candice S</creatorcontrib><creatorcontrib>Pawel, Bruce</creatorcontrib><creatorcontrib>Marshall, Glenn M</creatorcontrib><creatorcontrib>Zhao, Huaqing</creatorcontrib><creatorcontrib>Gilmour, Susan K</creatorcontrib><creatorcontrib>Norris, Murray D</creatorcontrib><creatorcontrib>Hogarty, Michael D</creatorcontrib><title>Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma.
We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity.
An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance.
Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Celecoxib - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Transformation, Neoplastic - drug effects</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Drug Evaluation, Preclinical</subject><subject>Drug Synergism</subject><subject>Eflornithine - pharmacology</subject><subject>Genes, myc</subject><subject>Homeostasis - drug effects</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neuroblastoma - drug therapy</subject><subject>Neuroblastoma - etiology</subject><subject>Neuroblastoma - mortality</subject><subject>Neuroblastoma - pathology</subject><subject>Oncogene Proteins - genetics</subject><subject>Oncogene Proteins - metabolism</subject><subject>Polyamines - antagonists & inhibitors</subject><subject>Polyamines - metabolism</subject><subject>Treatment Outcome</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EoqXwCaAs2aR47Dh2llXEo1JFK9S95SROa5TExU4W_XsctWWNZjEP3TszOgg9Ap4DMPECmIsYJ5TM8_wrBhYTRrMrNAXGeExJyq5DfdFM0J333xhDAji5RRPCMRABMEXrjW2OqjWdjhZdr3a2M76Ptnvt1MFoHy27vSlMH33qwdmiUb63rQpT0xvVG9tFqquijbM7p70P_T26qVXj9cM5z9D27XWbf8Sr9fsyX6zikoqsj1VCyiTjGZQs_FthkXEidFIngglaMgoAPBMUskJUNVchalWrEiqWMlVrOkPPp7UHZ38G7XvZGl_qplGdtoOXIAjPCKEc_0MKaUqBMB6k7CQtnfXe6VoenGmVO0rAcqQuR6JyJCoDdQlMjtSD7-l8YihaXf25LpjpL-CEfVw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Evageliou, Nicholas F</creator><creator>Haber, Michelle</creator><creator>Vu, Annette</creator><creator>Laetsch, Theodore W</creator><creator>Murray, Jayne</creator><creator>Gamble, Laura D</creator><creator>Cheng, Ngan Ching</creator><creator>Liu, Kangning</creator><creator>Reese, Megan</creator><creator>Corrigan, Kelly A</creator><creator>Ziegler, David S</creator><creator>Webber, Hannah</creator><creator>Hayes, Candice S</creator><creator>Pawel, Bruce</creator><creator>Marshall, Glenn M</creator><creator>Zhao, Huaqing</creator><creator>Gilmour, Susan K</creator><creator>Norris, Murray D</creator><creator>Hogarty, Michael D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160901</creationdate><title>Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression</title><author>Evageliou, Nicholas F ; Haber, Michelle ; Vu, Annette ; Laetsch, Theodore W ; Murray, Jayne ; Gamble, Laura D ; Cheng, Ngan Ching ; Liu, Kangning ; Reese, Megan ; Corrigan, Kelly A ; Ziegler, David S ; Webber, Hannah ; Hayes, Candice S ; Pawel, Bruce ; Marshall, Glenn M ; Zhao, Huaqing ; Gilmour, Susan K ; Norris, Murray D ; Hogarty, Michael D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Celecoxib - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Transformation, Neoplastic - drug effects</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Drug Evaluation, Preclinical</topic><topic>Drug Synergism</topic><topic>Eflornithine - pharmacology</topic><topic>Genes, myc</topic><topic>Homeostasis - drug effects</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neuroblastoma - drug therapy</topic><topic>Neuroblastoma - etiology</topic><topic>Neuroblastoma - mortality</topic><topic>Neuroblastoma - pathology</topic><topic>Oncogene Proteins - genetics</topic><topic>Oncogene Proteins - metabolism</topic><topic>Polyamines - antagonists & inhibitors</topic><topic>Polyamines - metabolism</topic><topic>Treatment Outcome</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evageliou, Nicholas F</creatorcontrib><creatorcontrib>Haber, Michelle</creatorcontrib><creatorcontrib>Vu, Annette</creatorcontrib><creatorcontrib>Laetsch, Theodore W</creatorcontrib><creatorcontrib>Murray, Jayne</creatorcontrib><creatorcontrib>Gamble, Laura D</creatorcontrib><creatorcontrib>Cheng, Ngan Ching</creatorcontrib><creatorcontrib>Liu, Kangning</creatorcontrib><creatorcontrib>Reese, Megan</creatorcontrib><creatorcontrib>Corrigan, Kelly A</creatorcontrib><creatorcontrib>Ziegler, David S</creatorcontrib><creatorcontrib>Webber, Hannah</creatorcontrib><creatorcontrib>Hayes, Candice S</creatorcontrib><creatorcontrib>Pawel, Bruce</creatorcontrib><creatorcontrib>Marshall, Glenn M</creatorcontrib><creatorcontrib>Zhao, Huaqing</creatorcontrib><creatorcontrib>Gilmour, Susan K</creatorcontrib><creatorcontrib>Norris, Murray D</creatorcontrib><creatorcontrib>Hogarty, Michael D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evageliou, Nicholas F</au><au>Haber, Michelle</au><au>Vu, Annette</au><au>Laetsch, Theodore W</au><au>Murray, Jayne</au><au>Gamble, Laura D</au><au>Cheng, Ngan Ching</au><au>Liu, Kangning</au><au>Reese, Megan</au><au>Corrigan, Kelly A</au><au>Ziegler, David S</au><au>Webber, Hannah</au><au>Hayes, Candice S</au><au>Pawel, Bruce</au><au>Marshall, Glenn M</au><au>Zhao, Huaqing</au><au>Gilmour, Susan K</au><au>Norris, Murray D</au><au>Hogarty, Michael D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>22</volume><issue>17</issue><spage>4391</spage><epage>4404</epage><pages>4391-4404</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma.
We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity.
An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance.
Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.</abstract><cop>United States</cop><pmid>27012811</pmid><doi>10.1158/1078-0432.CCR-15-2539</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-0432 |
ispartof | Clinical cancer research, 2016-09, Vol.22 (17), p.4391-4404 |
issn | 1078-0432 1557-3265 |
language | eng |
recordid | cdi_proquest_miscellaneous_1827922370 |
source | Freely Accessible Science Journals |
subjects | Animals Antineoplastic Agents - pharmacology Antineoplastic Combined Chemotherapy Protocols - therapeutic use Celecoxib - pharmacology Cell Line, Tumor Cell Transformation, Neoplastic - drug effects Disease Models, Animal Disease Progression Drug Evaluation, Preclinical Drug Synergism Eflornithine - pharmacology Genes, myc Homeostasis - drug effects Humans Mice Mice, Transgenic Neuroblastoma - drug therapy Neuroblastoma - etiology Neuroblastoma - mortality Neuroblastoma - pathology Oncogene Proteins - genetics Oncogene Proteins - metabolism Polyamines - antagonists & inhibitors Polyamines - metabolism Treatment Outcome Xenograft Model Antitumor Assays |
title | Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyamine%20Antagonist%20Therapies%20Inhibit%20Neuroblastoma%20Initiation%20and%20Progression&rft.jtitle=Clinical%20cancer%20research&rft.au=Evageliou,%20Nicholas%20F&rft.date=2016-09-01&rft.volume=22&rft.issue=17&rft.spage=4391&rft.epage=4404&rft.pages=4391-4404&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-15-2539&rft_dat=%3Cproquest_cross%3E1827922370%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816631257&rft_id=info:pmid/27012811&rfr_iscdi=true |