Loading…

Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression

Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research 2016-09, Vol.22 (17), p.4391-4404
Main Authors: Evageliou, Nicholas F, Haber, Michelle, Vu, Annette, Laetsch, Theodore W, Murray, Jayne, Gamble, Laura D, Cheng, Ngan Ching, Liu, Kangning, Reese, Megan, Corrigan, Kelly A, Ziegler, David S, Webber, Hannah, Hayes, Candice S, Pawel, Bruce, Marshall, Glenn M, Zhao, Huaqing, Gilmour, Susan K, Norris, Murray D, Hogarty, Michael D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3
cites cdi_FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3
container_end_page 4404
container_issue 17
container_start_page 4391
container_title Clinical cancer research
container_volume 22
creator Evageliou, Nicholas F
Haber, Michelle
Vu, Annette
Laetsch, Theodore W
Murray, Jayne
Gamble, Laura D
Cheng, Ngan Ching
Liu, Kangning
Reese, Megan
Corrigan, Kelly A
Ziegler, David S
Webber, Hannah
Hayes, Candice S
Pawel, Bruce
Marshall, Glenn M
Zhao, Huaqing
Gilmour, Susan K
Norris, Murray D
Hogarty, Michael D
description Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.
doi_str_mv 10.1158/1078-0432.CCR-15-2539
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1827922370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827922370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwCaAs2aR47Dh2llXEo1JFK9S95SROa5TExU4W_XsctWWNZjEP3TszOgg9Ap4DMPECmIsYJ5TM8_wrBhYTRrMrNAXGeExJyq5DfdFM0J333xhDAji5RRPCMRABMEXrjW2OqjWdjhZdr3a2M76Ptnvt1MFoHy27vSlMH33qwdmiUb63rQpT0xvVG9tFqquijbM7p70P_T26qVXj9cM5z9D27XWbf8Sr9fsyX6zikoqsj1VCyiTjGZQs_FthkXEidFIngglaMgoAPBMUskJUNVchalWrEiqWMlVrOkPPp7UHZ38G7XvZGl_qplGdtoOXIAjPCKEc_0MKaUqBMB6k7CQtnfXe6VoenGmVO0rAcqQuR6JyJCoDdQlMjtSD7-l8YihaXf25LpjpL-CEfVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816631257</pqid></control><display><type>article</type><title>Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression</title><source>Freely Accessible Science Journals</source><creator>Evageliou, Nicholas F ; Haber, Michelle ; Vu, Annette ; Laetsch, Theodore W ; Murray, Jayne ; Gamble, Laura D ; Cheng, Ngan Ching ; Liu, Kangning ; Reese, Megan ; Corrigan, Kelly A ; Ziegler, David S ; Webber, Hannah ; Hayes, Candice S ; Pawel, Bruce ; Marshall, Glenn M ; Zhao, Huaqing ; Gilmour, Susan K ; Norris, Murray D ; Hogarty, Michael D</creator><creatorcontrib>Evageliou, Nicholas F ; Haber, Michelle ; Vu, Annette ; Laetsch, Theodore W ; Murray, Jayne ; Gamble, Laura D ; Cheng, Ngan Ching ; Liu, Kangning ; Reese, Megan ; Corrigan, Kelly A ; Ziegler, David S ; Webber, Hannah ; Hayes, Candice S ; Pawel, Bruce ; Marshall, Glenn M ; Zhao, Huaqing ; Gilmour, Susan K ; Norris, Murray D ; Hogarty, Michael D</creatorcontrib><description>Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-15-2539</identifier><identifier>PMID: 27012811</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Celecoxib - pharmacology ; Cell Line, Tumor ; Cell Transformation, Neoplastic - drug effects ; Disease Models, Animal ; Disease Progression ; Drug Evaluation, Preclinical ; Drug Synergism ; Eflornithine - pharmacology ; Genes, myc ; Homeostasis - drug effects ; Humans ; Mice ; Mice, Transgenic ; Neuroblastoma - drug therapy ; Neuroblastoma - etiology ; Neuroblastoma - mortality ; Neuroblastoma - pathology ; Oncogene Proteins - genetics ; Oncogene Proteins - metabolism ; Polyamines - antagonists &amp; inhibitors ; Polyamines - metabolism ; Treatment Outcome ; Xenograft Model Antitumor Assays</subject><ispartof>Clinical cancer research, 2016-09, Vol.22 (17), p.4391-4404</ispartof><rights>2016 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3</citedby><cites>FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27012811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evageliou, Nicholas F</creatorcontrib><creatorcontrib>Haber, Michelle</creatorcontrib><creatorcontrib>Vu, Annette</creatorcontrib><creatorcontrib>Laetsch, Theodore W</creatorcontrib><creatorcontrib>Murray, Jayne</creatorcontrib><creatorcontrib>Gamble, Laura D</creatorcontrib><creatorcontrib>Cheng, Ngan Ching</creatorcontrib><creatorcontrib>Liu, Kangning</creatorcontrib><creatorcontrib>Reese, Megan</creatorcontrib><creatorcontrib>Corrigan, Kelly A</creatorcontrib><creatorcontrib>Ziegler, David S</creatorcontrib><creatorcontrib>Webber, Hannah</creatorcontrib><creatorcontrib>Hayes, Candice S</creatorcontrib><creatorcontrib>Pawel, Bruce</creatorcontrib><creatorcontrib>Marshall, Glenn M</creatorcontrib><creatorcontrib>Zhao, Huaqing</creatorcontrib><creatorcontrib>Gilmour, Susan K</creatorcontrib><creatorcontrib>Norris, Murray D</creatorcontrib><creatorcontrib>Hogarty, Michael D</creatorcontrib><title>Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Celecoxib - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Transformation, Neoplastic - drug effects</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Drug Evaluation, Preclinical</subject><subject>Drug Synergism</subject><subject>Eflornithine - pharmacology</subject><subject>Genes, myc</subject><subject>Homeostasis - drug effects</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neuroblastoma - drug therapy</subject><subject>Neuroblastoma - etiology</subject><subject>Neuroblastoma - mortality</subject><subject>Neuroblastoma - pathology</subject><subject>Oncogene Proteins - genetics</subject><subject>Oncogene Proteins - metabolism</subject><subject>Polyamines - antagonists &amp; inhibitors</subject><subject>Polyamines - metabolism</subject><subject>Treatment Outcome</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EoqXwCaAs2aR47Dh2llXEo1JFK9S95SROa5TExU4W_XsctWWNZjEP3TszOgg9Ap4DMPECmIsYJ5TM8_wrBhYTRrMrNAXGeExJyq5DfdFM0J333xhDAji5RRPCMRABMEXrjW2OqjWdjhZdr3a2M76Ptnvt1MFoHy27vSlMH33qwdmiUb63rQpT0xvVG9tFqquijbM7p70P_T26qVXj9cM5z9D27XWbf8Sr9fsyX6zikoqsj1VCyiTjGZQs_FthkXEidFIngglaMgoAPBMUskJUNVchalWrEiqWMlVrOkPPp7UHZ38G7XvZGl_qplGdtoOXIAjPCKEc_0MKaUqBMB6k7CQtnfXe6VoenGmVO0rAcqQuR6JyJCoDdQlMjtSD7-l8YihaXf25LpjpL-CEfVw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Evageliou, Nicholas F</creator><creator>Haber, Michelle</creator><creator>Vu, Annette</creator><creator>Laetsch, Theodore W</creator><creator>Murray, Jayne</creator><creator>Gamble, Laura D</creator><creator>Cheng, Ngan Ching</creator><creator>Liu, Kangning</creator><creator>Reese, Megan</creator><creator>Corrigan, Kelly A</creator><creator>Ziegler, David S</creator><creator>Webber, Hannah</creator><creator>Hayes, Candice S</creator><creator>Pawel, Bruce</creator><creator>Marshall, Glenn M</creator><creator>Zhao, Huaqing</creator><creator>Gilmour, Susan K</creator><creator>Norris, Murray D</creator><creator>Hogarty, Michael D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160901</creationdate><title>Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression</title><author>Evageliou, Nicholas F ; Haber, Michelle ; Vu, Annette ; Laetsch, Theodore W ; Murray, Jayne ; Gamble, Laura D ; Cheng, Ngan Ching ; Liu, Kangning ; Reese, Megan ; Corrigan, Kelly A ; Ziegler, David S ; Webber, Hannah ; Hayes, Candice S ; Pawel, Bruce ; Marshall, Glenn M ; Zhao, Huaqing ; Gilmour, Susan K ; Norris, Murray D ; Hogarty, Michael D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Celecoxib - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Transformation, Neoplastic - drug effects</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Drug Evaluation, Preclinical</topic><topic>Drug Synergism</topic><topic>Eflornithine - pharmacology</topic><topic>Genes, myc</topic><topic>Homeostasis - drug effects</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neuroblastoma - drug therapy</topic><topic>Neuroblastoma - etiology</topic><topic>Neuroblastoma - mortality</topic><topic>Neuroblastoma - pathology</topic><topic>Oncogene Proteins - genetics</topic><topic>Oncogene Proteins - metabolism</topic><topic>Polyamines - antagonists &amp; inhibitors</topic><topic>Polyamines - metabolism</topic><topic>Treatment Outcome</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evageliou, Nicholas F</creatorcontrib><creatorcontrib>Haber, Michelle</creatorcontrib><creatorcontrib>Vu, Annette</creatorcontrib><creatorcontrib>Laetsch, Theodore W</creatorcontrib><creatorcontrib>Murray, Jayne</creatorcontrib><creatorcontrib>Gamble, Laura D</creatorcontrib><creatorcontrib>Cheng, Ngan Ching</creatorcontrib><creatorcontrib>Liu, Kangning</creatorcontrib><creatorcontrib>Reese, Megan</creatorcontrib><creatorcontrib>Corrigan, Kelly A</creatorcontrib><creatorcontrib>Ziegler, David S</creatorcontrib><creatorcontrib>Webber, Hannah</creatorcontrib><creatorcontrib>Hayes, Candice S</creatorcontrib><creatorcontrib>Pawel, Bruce</creatorcontrib><creatorcontrib>Marshall, Glenn M</creatorcontrib><creatorcontrib>Zhao, Huaqing</creatorcontrib><creatorcontrib>Gilmour, Susan K</creatorcontrib><creatorcontrib>Norris, Murray D</creatorcontrib><creatorcontrib>Hogarty, Michael D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evageliou, Nicholas F</au><au>Haber, Michelle</au><au>Vu, Annette</au><au>Laetsch, Theodore W</au><au>Murray, Jayne</au><au>Gamble, Laura D</au><au>Cheng, Ngan Ching</au><au>Liu, Kangning</au><au>Reese, Megan</au><au>Corrigan, Kelly A</au><au>Ziegler, David S</au><au>Webber, Hannah</au><au>Hayes, Candice S</au><au>Pawel, Bruce</au><au>Marshall, Glenn M</au><au>Zhao, Huaqing</au><au>Gilmour, Susan K</au><au>Norris, Murray D</au><au>Hogarty, Michael D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>22</volume><issue>17</issue><spage>4391</spage><epage>4404</epage><pages>4391-4404</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.</abstract><cop>United States</cop><pmid>27012811</pmid><doi>10.1158/1078-0432.CCR-15-2539</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2016-09, Vol.22 (17), p.4391-4404
issn 1078-0432
1557-3265
language eng
recordid cdi_proquest_miscellaneous_1827922370
source Freely Accessible Science Journals
subjects Animals
Antineoplastic Agents - pharmacology
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Celecoxib - pharmacology
Cell Line, Tumor
Cell Transformation, Neoplastic - drug effects
Disease Models, Animal
Disease Progression
Drug Evaluation, Preclinical
Drug Synergism
Eflornithine - pharmacology
Genes, myc
Homeostasis - drug effects
Humans
Mice
Mice, Transgenic
Neuroblastoma - drug therapy
Neuroblastoma - etiology
Neuroblastoma - mortality
Neuroblastoma - pathology
Oncogene Proteins - genetics
Oncogene Proteins - metabolism
Polyamines - antagonists & inhibitors
Polyamines - metabolism
Treatment Outcome
Xenograft Model Antitumor Assays
title Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyamine%20Antagonist%20Therapies%20Inhibit%20Neuroblastoma%20Initiation%20and%20Progression&rft.jtitle=Clinical%20cancer%20research&rft.au=Evageliou,%20Nicholas%20F&rft.date=2016-09-01&rft.volume=22&rft.issue=17&rft.spage=4391&rft.epage=4404&rft.pages=4391-4404&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-15-2539&rft_dat=%3Cproquest_cross%3E1827922370%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-a42c49791c5557d089728e4f48583c53111798319b8df7a7a7fafac1d565afe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1816631257&rft_id=info:pmid/27012811&rfr_iscdi=true