Loading…

Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence

Summary Using the mRNA differential display technique, seven cDNAs have been isolated that are rapidly induced when cultured tobacco (Nicotiana tabacum) cells are treated with the mitochondrial electron transport inhibitor antimycin A (AA). Interestingly, six of the cDNAs show distinct similarity to...

Full description

Saved in:
Bibliographic Details
Published in:The Plant journal : for cell and molecular biology 2002-02, Vol.29 (3), p.269-279
Main Authors: Maxwell, Denis P., Nickels, Roxy, McIntosh, Lee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Using the mRNA differential display technique, seven cDNAs have been isolated that are rapidly induced when cultured tobacco (Nicotiana tabacum) cells are treated with the mitochondrial electron transport inhibitor antimycin A (AA). Interestingly, six of the cDNAs show distinct similarity to genes known to be induced by processes that involve programmed cell death (PCD), such as senescence and pathogen attack. All of the cDNAs as well as Aox1, a gene encoding the alternative oxidase, were found to also be strongly induced by H2O2 and salicylic acid (SA). AA, H2O2 and SA treatment of tobacco cells caused a rapid rise in intracellular ROS accumulation that, when prevented by antioxidant treatment, resulted in inhibition of gene induction. Besides AA, both H2O2 and SA were found to disrupt normal mitochondrial function resulting in decreased rates of electron transport and a lowering of cellular ATP levels. Furthermore, the pre‐treatment of tobacco cells with bongkrekic acid, a known inhibitor of the mitochondrial permeability transition pore in animal cells, was found to completely block gene induction when AA, H2O2 or SA were subsequently added. These findings suggest that the mitochondrion may serve an important role in conveying intracellular stress signals to the nucleus, leading to alterations in gene expression.
ISSN:0960-7412
1365-313X
DOI:10.1046/j.1365-313X.2002.01216.x