Loading…

A Mammalian Homolog of unc-53 Is Regulated by all-trans Retinoic Acid in Neuroblastoma Cells and Embryos

The vitamin A metabolite, all-trans retinoic acid (atRA), plays an important role in neuronal development, including neurite outgrowth. However, the genes that lie downstream of atRA and its receptors in neuronal cells are largely unknown. By using the human neuroblastoma cell line, SH-SY5Y, we have...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2002-03, Vol.99 (6), p.3422-3427
Main Authors: Merrill, R. A., Plum, L. A., Kaiser, M. E., Clagett-Dame, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vitamin A metabolite, all-trans retinoic acid (atRA), plays an important role in neuronal development, including neurite outgrowth. However, the genes that lie downstream of atRA and its receptors in neuronal cells are largely unknown. By using the human neuroblastoma cell line, SH-SY5Y, we have identified an atRA-responsive gene (RAINB1: retinoic acid inducible in neuroblastoma cells) that is induced within 4 h after exposure of SH-SY5Y cells to atRA. RAINB1 mRNA is highly expressed in the nervous system (10.5- to 11-kb transcript) in both developing embryos and adults. Its expression is perturbed in developing rat embryos exposed to excess or insufficient atRA. RAINB1 is present on chromosome 11 and is spread over 38 exons, resulting in a putative ORF of 2,429 amino acids. The RAINB1 protein shows high similarity to a gene in Caenorhabditis elegans, unc-53, that is required for axonal elongation of mechanosensory neurons, suggesting that these proteins are orthologs. Thus, RAINB1 may represent a critical downstream gene in atRA-mediated neurite outgrowth.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.052017399