Loading…

Bayesian analysis of data from single case designs

Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a...

Full description

Saved in:
Bibliographic Details
Published in:Neuropsychological rehabilitation 2014-07, Vol.24 (3-4), p.572-589
Main Author: Rindskopf, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3
cites cdi_FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3
container_end_page 589
container_issue 3-4
container_start_page 572
container_title Neuropsychological rehabilitation
container_volume 24
creator Rindskopf, David
description Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a Bayesian analysis is more natural than those from classical methods, and there are interpretations of useful quantities that are not possible in classical statistics, such as the probability that an effect size is small, or is greater than zero, or is large enough to be considered important. They are not based on asymptotic theory, so small sample size is not a problem for inference. These methods are implemented on free software, and are similar to non-Bayesian software, so analysts familiar with frequentist methods for multilevel data should find the transition relatively painless.
doi_str_mv 10.1080/09602011.2013.866903
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1832249364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1558993549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3</originalsourceid><addsrcrecordid>eNqF0U1LHEEQBuAmKHGzyT8QGfDiZdbqz-k-hSgmCoIXPTe1_SEjM9OmexfZf28vozl4iJeqy1NVUC8hxxRWFDScg1HAgNJVLXyllTLAv5AFFUq0oIw4IIs9affmiHwr5QmAahDqKzligisJvFsQdoG7UHqcGpxw2JW-NCk2HjfYxJzGpvTT4xAahyU0vsLHqXwnhxGHEn689SV5-H11f3nd3t79ubn8dds6ybpNS4V2bq1U56WM1GhvpOQqoBMdSBO9AeBaYeziOiKXGr2jwDwixI45HvmSnM17n3P6uw1lY8e-uDAMOIW0LZZqzpgwXInPqZTaGC6r_pzyThqu6zeX5PQDfUrbXN80K6brZVWVmJXLqZQcon3O_Yh5ZynYfVL2PSm7T8rOSdWxk7fl2_UY_L-h92gq-DmDfoopj_iS8uDtBndDyjHj5Ppi-X9PvALgMZ6_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537286436</pqid></control><display><type>article</type><title>Bayesian analysis of data from single case designs</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>EBSCOhost MLA International Bibliography With Full Text</source><source>EBSCOhost SPORTDiscus with Full Text</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list)</source><creator>Rindskopf, David</creator><creatorcontrib>Rindskopf, David</creatorcontrib><description>Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a Bayesian analysis is more natural than those from classical methods, and there are interpretations of useful quantities that are not possible in classical statistics, such as the probability that an effect size is small, or is greater than zero, or is large enough to be considered important. They are not based on asymptotic theory, so small sample size is not a problem for inference. These methods are implemented on free software, and are similar to non-Bayesian software, so analysts familiar with frequentist methods for multilevel data should find the transition relatively painless.</description><identifier>ISSN: 0960-2011</identifier><identifier>EISSN: 1464-0694</identifier><identifier>DOI: 10.1080/09602011.2013.866903</identifier><identifier>PMID: 24365037</identifier><identifier>CODEN: NREHE3</identifier><language>eng</language><publisher>England: Routledge</publisher><subject>Bayes Theorem ; Bayesian ; Bayesian analysis ; Hierarchical models ; Humans ; Models, Statistical ; Multilevel models ; Parameters ; Research Design - statistics &amp; numerical data ; Single case ; Single subject ; Software</subject><ispartof>Neuropsychological rehabilitation, 2014-07, Vol.24 (3-4), p.572-589</ispartof><rights>2013 Taylor &amp; Francis 2013</rights><rights>2013 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3</citedby><cites>FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,30997,30998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24365037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rindskopf, David</creatorcontrib><title>Bayesian analysis of data from single case designs</title><title>Neuropsychological rehabilitation</title><addtitle>Neuropsychol Rehabil</addtitle><description>Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a Bayesian analysis is more natural than those from classical methods, and there are interpretations of useful quantities that are not possible in classical statistics, such as the probability that an effect size is small, or is greater than zero, or is large enough to be considered important. They are not based on asymptotic theory, so small sample size is not a problem for inference. These methods are implemented on free software, and are similar to non-Bayesian software, so analysts familiar with frequentist methods for multilevel data should find the transition relatively painless.</description><subject>Bayes Theorem</subject><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Hierarchical models</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Multilevel models</subject><subject>Parameters</subject><subject>Research Design - statistics &amp; numerical data</subject><subject>Single case</subject><subject>Single subject</subject><subject>Software</subject><issn>0960-2011</issn><issn>1464-0694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNqF0U1LHEEQBuAmKHGzyT8QGfDiZdbqz-k-hSgmCoIXPTe1_SEjM9OmexfZf28vozl4iJeqy1NVUC8hxxRWFDScg1HAgNJVLXyllTLAv5AFFUq0oIw4IIs9affmiHwr5QmAahDqKzligisJvFsQdoG7UHqcGpxw2JW-NCk2HjfYxJzGpvTT4xAahyU0vsLHqXwnhxGHEn689SV5-H11f3nd3t79ubn8dds6ybpNS4V2bq1U56WM1GhvpOQqoBMdSBO9AeBaYeziOiKXGr2jwDwixI45HvmSnM17n3P6uw1lY8e-uDAMOIW0LZZqzpgwXInPqZTaGC6r_pzyThqu6zeX5PQDfUrbXN80K6brZVWVmJXLqZQcon3O_Yh5ZynYfVL2PSm7T8rOSdWxk7fl2_UY_L-h92gq-DmDfoopj_iS8uDtBndDyjHj5Ppi-X9PvALgMZ6_</recordid><startdate>20140704</startdate><enddate>20140704</enddate><creator>Rindskopf, David</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7TK</scope><scope>7TS</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20140704</creationdate><title>Bayesian analysis of data from single case designs</title><author>Rindskopf, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayes Theorem</topic><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Hierarchical models</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Multilevel models</topic><topic>Parameters</topic><topic>Research Design - statistics &amp; numerical data</topic><topic>Single case</topic><topic>Single subject</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rindskopf, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Neuropsychological rehabilitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rindskopf, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of data from single case designs</atitle><jtitle>Neuropsychological rehabilitation</jtitle><addtitle>Neuropsychol Rehabil</addtitle><date>2014-07-04</date><risdate>2014</risdate><volume>24</volume><issue>3-4</issue><spage>572</spage><epage>589</epage><pages>572-589</pages><issn>0960-2011</issn><eissn>1464-0694</eissn><coden>NREHE3</coden><abstract>Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a Bayesian analysis is more natural than those from classical methods, and there are interpretations of useful quantities that are not possible in classical statistics, such as the probability that an effect size is small, or is greater than zero, or is large enough to be considered important. They are not based on asymptotic theory, so small sample size is not a problem for inference. These methods are implemented on free software, and are similar to non-Bayesian software, so analysts familiar with frequentist methods for multilevel data should find the transition relatively painless.</abstract><cop>England</cop><pub>Routledge</pub><pmid>24365037</pmid><doi>10.1080/09602011.2013.866903</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-2011
ispartof Neuropsychological rehabilitation, 2014-07, Vol.24 (3-4), p.572-589
issn 0960-2011
1464-0694
language eng
recordid cdi_proquest_miscellaneous_1832249364
source Applied Social Sciences Index & Abstracts (ASSIA); EBSCOhost MLA International Bibliography With Full Text; EBSCOhost SPORTDiscus with Full Text; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list)
subjects Bayes Theorem
Bayesian
Bayesian analysis
Hierarchical models
Humans
Models, Statistical
Multilevel models
Parameters
Research Design - statistics & numerical data
Single case
Single subject
Software
title Bayesian analysis of data from single case designs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20data%20from%20single%20case%20designs&rft.jtitle=Neuropsychological%20rehabilitation&rft.au=Rindskopf,%20David&rft.date=2014-07-04&rft.volume=24&rft.issue=3-4&rft.spage=572&rft.epage=589&rft.pages=572-589&rft.issn=0960-2011&rft.eissn=1464-0694&rft.coden=NREHE3&rft_id=info:doi/10.1080/09602011.2013.866903&rft_dat=%3Cproquest_infor%3E1558993549%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537286436&rft_id=info:pmid/24365037&rfr_iscdi=true