Loading…
Bayesian analysis of data from single case designs
Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a...
Saved in:
Published in: | Neuropsychological rehabilitation 2014-07, Vol.24 (3-4), p.572-589 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3 |
container_end_page | 589 |
container_issue | 3-4 |
container_start_page | 572 |
container_title | Neuropsychological rehabilitation |
container_volume | 24 |
creator | Rindskopf, David |
description | Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a Bayesian analysis is more natural than those from classical methods, and there are interpretations of useful quantities that are not possible in classical statistics, such as the probability that an effect size is small, or is greater than zero, or is large enough to be considered important. They are not based on asymptotic theory, so small sample size is not a problem for inference. These methods are implemented on free software, and are similar to non-Bayesian software, so analysts familiar with frequentist methods for multilevel data should find the transition relatively painless. |
doi_str_mv | 10.1080/09602011.2013.866903 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_miscellaneous_1832249364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1558993549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3</originalsourceid><addsrcrecordid>eNqF0U1LHEEQBuAmKHGzyT8QGfDiZdbqz-k-hSgmCoIXPTe1_SEjM9OmexfZf28vozl4iJeqy1NVUC8hxxRWFDScg1HAgNJVLXyllTLAv5AFFUq0oIw4IIs9affmiHwr5QmAahDqKzligisJvFsQdoG7UHqcGpxw2JW-NCk2HjfYxJzGpvTT4xAahyU0vsLHqXwnhxGHEn689SV5-H11f3nd3t79ubn8dds6ybpNS4V2bq1U56WM1GhvpOQqoBMdSBO9AeBaYeziOiKXGr2jwDwixI45HvmSnM17n3P6uw1lY8e-uDAMOIW0LZZqzpgwXInPqZTaGC6r_pzyThqu6zeX5PQDfUrbXN80K6brZVWVmJXLqZQcon3O_Yh5ZynYfVL2PSm7T8rOSdWxk7fl2_UY_L-h92gq-DmDfoopj_iS8uDtBndDyjHj5Ppi-X9PvALgMZ6_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537286436</pqid></control><display><type>article</type><title>Bayesian analysis of data from single case designs</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>EBSCOhost MLA International Bibliography With Full Text</source><source>EBSCOhost SPORTDiscus with Full Text</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list)</source><creator>Rindskopf, David</creator><creatorcontrib>Rindskopf, David</creatorcontrib><description>Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a Bayesian analysis is more natural than those from classical methods, and there are interpretations of useful quantities that are not possible in classical statistics, such as the probability that an effect size is small, or is greater than zero, or is large enough to be considered important. They are not based on asymptotic theory, so small sample size is not a problem for inference. These methods are implemented on free software, and are similar to non-Bayesian software, so analysts familiar with frequentist methods for multilevel data should find the transition relatively painless.</description><identifier>ISSN: 0960-2011</identifier><identifier>EISSN: 1464-0694</identifier><identifier>DOI: 10.1080/09602011.2013.866903</identifier><identifier>PMID: 24365037</identifier><identifier>CODEN: NREHE3</identifier><language>eng</language><publisher>England: Routledge</publisher><subject>Bayes Theorem ; Bayesian ; Bayesian analysis ; Hierarchical models ; Humans ; Models, Statistical ; Multilevel models ; Parameters ; Research Design - statistics & numerical data ; Single case ; Single subject ; Software</subject><ispartof>Neuropsychological rehabilitation, 2014-07, Vol.24 (3-4), p.572-589</ispartof><rights>2013 Taylor & Francis 2013</rights><rights>2013 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3</citedby><cites>FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,30997,30998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24365037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rindskopf, David</creatorcontrib><title>Bayesian analysis of data from single case designs</title><title>Neuropsychological rehabilitation</title><addtitle>Neuropsychol Rehabil</addtitle><description>Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a Bayesian analysis is more natural than those from classical methods, and there are interpretations of useful quantities that are not possible in classical statistics, such as the probability that an effect size is small, or is greater than zero, or is large enough to be considered important. They are not based on asymptotic theory, so small sample size is not a problem for inference. These methods are implemented on free software, and are similar to non-Bayesian software, so analysts familiar with frequentist methods for multilevel data should find the transition relatively painless.</description><subject>Bayes Theorem</subject><subject>Bayesian</subject><subject>Bayesian analysis</subject><subject>Hierarchical models</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Multilevel models</subject><subject>Parameters</subject><subject>Research Design - statistics & numerical data</subject><subject>Single case</subject><subject>Single subject</subject><subject>Software</subject><issn>0960-2011</issn><issn>1464-0694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNqF0U1LHEEQBuAmKHGzyT8QGfDiZdbqz-k-hSgmCoIXPTe1_SEjM9OmexfZf28vozl4iJeqy1NVUC8hxxRWFDScg1HAgNJVLXyllTLAv5AFFUq0oIw4IIs9affmiHwr5QmAahDqKzligisJvFsQdoG7UHqcGpxw2JW-NCk2HjfYxJzGpvTT4xAahyU0vsLHqXwnhxGHEn689SV5-H11f3nd3t79ubn8dds6ybpNS4V2bq1U56WM1GhvpOQqoBMdSBO9AeBaYeziOiKXGr2jwDwixI45HvmSnM17n3P6uw1lY8e-uDAMOIW0LZZqzpgwXInPqZTaGC6r_pzyThqu6zeX5PQDfUrbXN80K6brZVWVmJXLqZQcon3O_Yh5ZynYfVL2PSm7T8rOSdWxk7fl2_UY_L-h92gq-DmDfoopj_iS8uDtBndDyjHj5Ppi-X9PvALgMZ6_</recordid><startdate>20140704</startdate><enddate>20140704</enddate><creator>Rindskopf, David</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7TK</scope><scope>7TS</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20140704</creationdate><title>Bayesian analysis of data from single case designs</title><author>Rindskopf, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayes Theorem</topic><topic>Bayesian</topic><topic>Bayesian analysis</topic><topic>Hierarchical models</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Multilevel models</topic><topic>Parameters</topic><topic>Research Design - statistics & numerical data</topic><topic>Single case</topic><topic>Single subject</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rindskopf, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Neuropsychological rehabilitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rindskopf, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian analysis of data from single case designs</atitle><jtitle>Neuropsychological rehabilitation</jtitle><addtitle>Neuropsychol Rehabil</addtitle><date>2014-07-04</date><risdate>2014</risdate><volume>24</volume><issue>3-4</issue><spage>572</spage><epage>589</epage><pages>572-589</pages><issn>0960-2011</issn><eissn>1464-0694</eissn><coden>NREHE3</coden><abstract>Bayesian statistical methods have great potential advantages for the analysis of data from single case designs. Bayesian methods combine prior information with data from a study to form a posterior distribution of information about their parameters and functions. The interpretation of results from a Bayesian analysis is more natural than those from classical methods, and there are interpretations of useful quantities that are not possible in classical statistics, such as the probability that an effect size is small, or is greater than zero, or is large enough to be considered important. They are not based on asymptotic theory, so small sample size is not a problem for inference. These methods are implemented on free software, and are similar to non-Bayesian software, so analysts familiar with frequentist methods for multilevel data should find the transition relatively painless.</abstract><cop>England</cop><pub>Routledge</pub><pmid>24365037</pmid><doi>10.1080/09602011.2013.866903</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-2011 |
ispartof | Neuropsychological rehabilitation, 2014-07, Vol.24 (3-4), p.572-589 |
issn | 0960-2011 1464-0694 |
language | eng |
recordid | cdi_proquest_miscellaneous_1832249364 |
source | Applied Social Sciences Index & Abstracts (ASSIA); EBSCOhost MLA International Bibliography With Full Text; EBSCOhost SPORTDiscus with Full Text; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Social Sciences and Humanities Collection (Reading list) |
subjects | Bayes Theorem Bayesian Bayesian analysis Hierarchical models Humans Models, Statistical Multilevel models Parameters Research Design - statistics & numerical data Single case Single subject Software |
title | Bayesian analysis of data from single case designs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20analysis%20of%20data%20from%20single%20case%20designs&rft.jtitle=Neuropsychological%20rehabilitation&rft.au=Rindskopf,%20David&rft.date=2014-07-04&rft.volume=24&rft.issue=3-4&rft.spage=572&rft.epage=589&rft.pages=572-589&rft.issn=0960-2011&rft.eissn=1464-0694&rft.coden=NREHE3&rft_id=info:doi/10.1080/09602011.2013.866903&rft_dat=%3Cproquest_infor%3E1558993549%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-148ccb667d55f198d95536eac47059fd900386af7fbfa358adc102daa0f72c3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1537286436&rft_id=info:pmid/24365037&rfr_iscdi=true |