Loading…
Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top
A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute...
Saved in:
Published in: | Boundary-layer meteorology 2002-02, Vol.102 (2), p.253-280 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613 |
container_end_page | 280 |
container_issue | 2 |
container_start_page | 253 |
container_title | Boundary-layer meteorology |
container_volume | 102 |
creator | VANZANTEN, Margreet C DUYNKERKE, Peter G |
description | A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1013129713315 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18343326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101697601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613</originalsourceid><addsrcrecordid>eNpdkUFPHDEMhaMKpC4L514jpHKbEo-TySy3FSq0ElIlBOeRN5PQQdlkSWZA5cgvb7ZLW8HJfvbnZ0tm7BOILyBqPF2egQCEeqEBEdQHNgOlsQKp6z02E0I0VYsgP7KDnO-L1KDEjL1cUz_QODxaTqHn9pE2Me20idEP4Y4PgY8_LbdhTDSEdYn8OQbLo-O5lMZopvXkp3zGbwqWov_T8jHcPVGxSf8W_DWkVdwqH6eej3FzyPYd-WyPXuOc3V58vTn_Vl39uPx-vryqDNZ6rEAr2YMQtRXkWr1ytSPsVVPLbaqks663QpHQrSXVrPqFlBJAYrMwxjWAc3ay892k-DDZPHbrIRvrPQUbp9xBixKxbgp4_A68j1MK5bZOYwuqldgW6HQHmRRzTtZ1mzSsKf3qQHTbh3TL7s1DysTnV1vKhrxLFMyQ_4-h1KhbwN96EIw6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>738158438</pqid></control><display><type>article</type><title>Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top</title><source>Springer Nature</source><creator>VANZANTEN, Margreet C ; DUYNKERKE, Peter G</creator><creatorcontrib>VANZANTEN, Margreet C ; DUYNKERKE, Peter G</creatorcontrib><description>A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1023/A:1013129713315</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Boundary layers ; Clouds ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Cooling ; Earth, ocean, space ; Entrainment ; Exact sciences and technology ; External geophysics ; Meteorology ; Temperature ; Temperature inversions</subject><ispartof>Boundary-layer meteorology, 2002-02, Vol.102 (2), p.253-280</ispartof><rights>2002 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613</citedby><cites>FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13473781$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VANZANTEN, Margreet C</creatorcontrib><creatorcontrib>DUYNKERKE, Peter G</creatorcontrib><title>Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top</title><title>Boundary-layer meteorology</title><description>A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.[PUBLICATION ABSTRACT]</description><subject>Boundary layers</subject><subject>Clouds</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Cooling</subject><subject>Earth, ocean, space</subject><subject>Entrainment</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Temperature</subject><subject>Temperature inversions</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpdkUFPHDEMhaMKpC4L514jpHKbEo-TySy3FSq0ElIlBOeRN5PQQdlkSWZA5cgvb7ZLW8HJfvbnZ0tm7BOILyBqPF2egQCEeqEBEdQHNgOlsQKp6z02E0I0VYsgP7KDnO-L1KDEjL1cUz_QODxaTqHn9pE2Me20idEP4Y4PgY8_LbdhTDSEdYn8OQbLo-O5lMZopvXkp3zGbwqWov_T8jHcPVGxSf8W_DWkVdwqH6eej3FzyPYd-WyPXuOc3V58vTn_Vl39uPx-vryqDNZ6rEAr2YMQtRXkWr1ytSPsVVPLbaqks663QpHQrSXVrPqFlBJAYrMwxjWAc3ay892k-DDZPHbrIRvrPQUbp9xBixKxbgp4_A68j1MK5bZOYwuqldgW6HQHmRRzTtZ1mzSsKf3qQHTbh3TL7s1DysTnV1vKhrxLFMyQ_4-h1KhbwN96EIw6</recordid><startdate>200202</startdate><enddate>200202</enddate><creator>VANZANTEN, Margreet C</creator><creator>DUYNKERKE, Peter G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200202</creationdate><title>Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top</title><author>VANZANTEN, Margreet C ; DUYNKERKE, Peter G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Boundary layers</topic><topic>Clouds</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Cooling</topic><topic>Earth, ocean, space</topic><topic>Entrainment</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Temperature</topic><topic>Temperature inversions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VANZANTEN, Margreet C</creatorcontrib><creatorcontrib>DUYNKERKE, Peter G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VANZANTEN, Margreet C</au><au>DUYNKERKE, Peter G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top</atitle><jtitle>Boundary-layer meteorology</jtitle><date>2002-02</date><risdate>2002</risdate><volume>102</volume><issue>2</issue><spage>253</spage><epage>280</epage><pages>253-280</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/A:1013129713315</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2002-02, Vol.102 (2), p.253-280 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_miscellaneous_18343326 |
source | Springer Nature |
subjects | Boundary layers Clouds Convection, turbulence, diffusion. Boundary layer structure and dynamics Cooling Earth, ocean, space Entrainment Exact sciences and technology External geophysics Meteorology Temperature Temperature inversions |
title | Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20and%20evaporative%20cooling%20in%20the%20entrainment%20zone%20of%20stratocumulus:%20The%20role%20of%20longwave%20radiative%20cooling%20above%20cloud%20top&rft.jtitle=Boundary-layer%20meteorology&rft.au=VANZANTEN,%20Margreet%20C&rft.date=2002-02&rft.volume=102&rft.issue=2&rft.spage=253&rft.epage=280&rft.pages=253-280&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1023/A:1013129713315&rft_dat=%3Cproquest_cross%3E2101697601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=738158438&rft_id=info:pmid/&rfr_iscdi=true |