Loading…

Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top

A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute...

Full description

Saved in:
Bibliographic Details
Published in:Boundary-layer meteorology 2002-02, Vol.102 (2), p.253-280
Main Authors: VANZANTEN, Margreet C, DUYNKERKE, Peter G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613
cites cdi_FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613
container_end_page 280
container_issue 2
container_start_page 253
container_title Boundary-layer meteorology
container_volume 102
creator VANZANTEN, Margreet C
DUYNKERKE, Peter G
description A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1013129713315
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18343326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101697601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613</originalsourceid><addsrcrecordid>eNpdkUFPHDEMhaMKpC4L514jpHKbEo-TySy3FSq0ElIlBOeRN5PQQdlkSWZA5cgvb7ZLW8HJfvbnZ0tm7BOILyBqPF2egQCEeqEBEdQHNgOlsQKp6z02E0I0VYsgP7KDnO-L1KDEjL1cUz_QODxaTqHn9pE2Me20idEP4Y4PgY8_LbdhTDSEdYn8OQbLo-O5lMZopvXkp3zGbwqWov_T8jHcPVGxSf8W_DWkVdwqH6eej3FzyPYd-WyPXuOc3V58vTn_Vl39uPx-vryqDNZ6rEAr2YMQtRXkWr1ytSPsVVPLbaqks663QpHQrSXVrPqFlBJAYrMwxjWAc3ay892k-DDZPHbrIRvrPQUbp9xBixKxbgp4_A68j1MK5bZOYwuqldgW6HQHmRRzTtZ1mzSsKf3qQHTbh3TL7s1DysTnV1vKhrxLFMyQ_4-h1KhbwN96EIw6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>738158438</pqid></control><display><type>article</type><title>Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top</title><source>Springer Nature</source><creator>VANZANTEN, Margreet C ; DUYNKERKE, Peter G</creator><creatorcontrib>VANZANTEN, Margreet C ; DUYNKERKE, Peter G</creatorcontrib><description>A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1023/A:1013129713315</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Boundary layers ; Clouds ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Cooling ; Earth, ocean, space ; Entrainment ; Exact sciences and technology ; External geophysics ; Meteorology ; Temperature ; Temperature inversions</subject><ispartof>Boundary-layer meteorology, 2002-02, Vol.102 (2), p.253-280</ispartof><rights>2002 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613</citedby><cites>FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13473781$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VANZANTEN, Margreet C</creatorcontrib><creatorcontrib>DUYNKERKE, Peter G</creatorcontrib><title>Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top</title><title>Boundary-layer meteorology</title><description>A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.[PUBLICATION ABSTRACT]</description><subject>Boundary layers</subject><subject>Clouds</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Cooling</subject><subject>Earth, ocean, space</subject><subject>Entrainment</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Temperature</subject><subject>Temperature inversions</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpdkUFPHDEMhaMKpC4L514jpHKbEo-TySy3FSq0ElIlBOeRN5PQQdlkSWZA5cgvb7ZLW8HJfvbnZ0tm7BOILyBqPF2egQCEeqEBEdQHNgOlsQKp6z02E0I0VYsgP7KDnO-L1KDEjL1cUz_QODxaTqHn9pE2Me20idEP4Y4PgY8_LbdhTDSEdYn8OQbLo-O5lMZopvXkp3zGbwqWov_T8jHcPVGxSf8W_DWkVdwqH6eej3FzyPYd-WyPXuOc3V58vTn_Vl39uPx-vryqDNZ6rEAr2YMQtRXkWr1ytSPsVVPLbaqks663QpHQrSXVrPqFlBJAYrMwxjWAc3ay892k-DDZPHbrIRvrPQUbp9xBixKxbgp4_A68j1MK5bZOYwuqldgW6HQHmRRzTtZ1mzSsKf3qQHTbh3TL7s1DysTnV1vKhrxLFMyQ_4-h1KhbwN96EIw6</recordid><startdate>200202</startdate><enddate>200202</enddate><creator>VANZANTEN, Margreet C</creator><creator>DUYNKERKE, Peter G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200202</creationdate><title>Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top</title><author>VANZANTEN, Margreet C ; DUYNKERKE, Peter G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Boundary layers</topic><topic>Clouds</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Cooling</topic><topic>Earth, ocean, space</topic><topic>Entrainment</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Temperature</topic><topic>Temperature inversions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VANZANTEN, Margreet C</creatorcontrib><creatorcontrib>DUYNKERKE, Peter G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VANZANTEN, Margreet C</au><au>DUYNKERKE, Peter G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top</atitle><jtitle>Boundary-layer meteorology</jtitle><date>2002-02</date><risdate>2002</risdate><volume>102</volume><issue>2</issue><spage>253</spage><epage>280</epage><pages>253-280</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/A:1013129713315</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2002-02, Vol.102 (2), p.253-280
issn 0006-8314
1573-1472
language eng
recordid cdi_proquest_miscellaneous_18343326
source Springer Nature
subjects Boundary layers
Clouds
Convection, turbulence, diffusion. Boundary layer structure and dynamics
Cooling
Earth, ocean, space
Entrainment
Exact sciences and technology
External geophysics
Meteorology
Temperature
Temperature inversions
title Radiative and evaporative cooling in the entrainment zone of stratocumulus: The role of longwave radiative cooling above cloud top
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20and%20evaporative%20cooling%20in%20the%20entrainment%20zone%20of%20stratocumulus:%20The%20role%20of%20longwave%20radiative%20cooling%20above%20cloud%20top&rft.jtitle=Boundary-layer%20meteorology&rft.au=VANZANTEN,%20Margreet%20C&rft.date=2002-02&rft.volume=102&rft.issue=2&rft.spage=253&rft.epage=280&rft.pages=253-280&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1023/A:1013129713315&rft_dat=%3Cproquest_cross%3E2101697601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-1754d1002e0af87bf2fa3d5624bf2f54fefde05a078ea56bd9444114369ccf613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=738158438&rft_id=info:pmid/&rfr_iscdi=true