Loading…
Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions
Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostr...
Saved in:
Published in: | ACS nano 2016-11, Vol.10 (11), p.10573-10579 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10579 |
container_issue | 11 |
container_start_page | 10573 |
container_title | ACS nano |
container_volume | 10 |
creator | Shastry, Tejas A Balla, Itamar Bergeron, Hadallia Amsterdam, Samuel H Marks, Tobin J Hersam, Mark C |
description | Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC–polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC–polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC–polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells. |
doi_str_mv | 10.1021/acsnano.6b06592 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835003514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835003514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-96a545a801c7717ec49a1156cdacdd494eb981b4481ceb8a985b55ae85e9cd593</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKtnrzkKsjXpbnaTYynVCi1WquBtmc1O2y1poptE6M138A19EldaPP0zzMcw8xFyzdmAsyG_A-0tWDfIK5YLNTwhPa7SPGEyfzv9rwU_JxfebxkThSzyHgnzGCIYuti44EzcNRa9RquRPscuNo1dU7D1Yf7pTIBG08lqhTrQxtIZtGtMRi0CXXaowWQGe2zp3C2HP1_fC2f2u66dYsDWbaPVoXHWX5KzFRiPV8fsk9f7yct4msyeHh7Ho1kCacpDonIQmQDJuC4KXqDOFHAucl2DrutMZVgpyassk1xjJUFJUQkBKAUqXQuV9snNYe976z4i-lDumu47Y8Cii77kMhWMpYJnHXp7QDuN5dbF1naHlZyVf27Lo9vy6Db9BZV_cW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835003514</pqid></control><display><type>article</type><title>Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Shastry, Tejas A ; Balla, Itamar ; Bergeron, Hadallia ; Amsterdam, Samuel H ; Marks, Tobin J ; Hersam, Mark C</creator><creatorcontrib>Shastry, Tejas A ; Balla, Itamar ; Bergeron, Hadallia ; Amsterdam, Samuel H ; Marks, Tobin J ; Hersam, Mark C</creatorcontrib><description>Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC–polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC–polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC–polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b06592</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2016-11, Vol.10 (11), p.10573-10579</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shastry, Tejas A</creatorcontrib><creatorcontrib>Balla, Itamar</creatorcontrib><creatorcontrib>Bergeron, Hadallia</creatorcontrib><creatorcontrib>Amsterdam, Samuel H</creatorcontrib><creatorcontrib>Marks, Tobin J</creatorcontrib><creatorcontrib>Hersam, Mark C</creatorcontrib><title>Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC–polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC–polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC–polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhoMoWKtnrzkKsjXpbnaTYynVCi1WquBtmc1O2y1poptE6M138A19EldaPP0zzMcw8xFyzdmAsyG_A-0tWDfIK5YLNTwhPa7SPGEyfzv9rwU_JxfebxkThSzyHgnzGCIYuti44EzcNRa9RquRPscuNo1dU7D1Yf7pTIBG08lqhTrQxtIZtGtMRi0CXXaowWQGe2zp3C2HP1_fC2f2u66dYsDWbaPVoXHWX5KzFRiPV8fsk9f7yct4msyeHh7Ho1kCacpDonIQmQDJuC4KXqDOFHAucl2DrutMZVgpyassk1xjJUFJUQkBKAUqXQuV9snNYe976z4i-lDumu47Y8Cii77kMhWMpYJnHXp7QDuN5dbF1naHlZyVf27Lo9vy6Db9BZV_cW8</recordid><startdate>20161122</startdate><enddate>20161122</enddate><creator>Shastry, Tejas A</creator><creator>Balla, Itamar</creator><creator>Bergeron, Hadallia</creator><creator>Amsterdam, Samuel H</creator><creator>Marks, Tobin J</creator><creator>Hersam, Mark C</creator><general>American Chemical Society</general><scope>7X8</scope></search><sort><creationdate>20161122</creationdate><title>Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions</title><author>Shastry, Tejas A ; Balla, Itamar ; Bergeron, Hadallia ; Amsterdam, Samuel H ; Marks, Tobin J ; Hersam, Mark C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-96a545a801c7717ec49a1156cdacdd494eb981b4481ceb8a985b55ae85e9cd593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shastry, Tejas A</creatorcontrib><creatorcontrib>Balla, Itamar</creatorcontrib><creatorcontrib>Bergeron, Hadallia</creatorcontrib><creatorcontrib>Amsterdam, Samuel H</creatorcontrib><creatorcontrib>Marks, Tobin J</creatorcontrib><creatorcontrib>Hersam, Mark C</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shastry, Tejas A</au><au>Balla, Itamar</au><au>Bergeron, Hadallia</au><au>Amsterdam, Samuel H</au><au>Marks, Tobin J</au><au>Hersam, Mark C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-11-22</date><risdate>2016</risdate><volume>10</volume><issue>11</issue><spage>10573</spage><epage>10579</epage><pages>10573-10579</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC–polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC–polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC–polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.6b06592</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2016-11, Vol.10 (11), p.10573-10579 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1835003514 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutual%20Photoluminescence%20Quenching%20and%20Photovoltaic%20Effect%20in%20Large-Area%20Single-Layer%20MoS2%E2%80%93Polymer%20Heterojunctions&rft.jtitle=ACS%20nano&rft.au=Shastry,%20Tejas%20A&rft.date=2016-11-22&rft.volume=10&rft.issue=11&rft.spage=10573&rft.epage=10579&rft.pages=10573-10579&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b06592&rft_dat=%3Cproquest_acs_j%3E1835003514%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a331t-96a545a801c7717ec49a1156cdacdd494eb981b4481ceb8a985b55ae85e9cd593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835003514&rft_id=info:pmid/&rfr_iscdi=true |