Loading…

Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions

Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostr...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2016-11, Vol.10 (11), p.10573-10579
Main Authors: Shastry, Tejas A, Balla, Itamar, Bergeron, Hadallia, Amsterdam, Samuel H, Marks, Tobin J, Hersam, Mark C
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10579
container_issue 11
container_start_page 10573
container_title ACS nano
container_volume 10
creator Shastry, Tejas A
Balla, Itamar
Bergeron, Hadallia
Amsterdam, Samuel H
Marks, Tobin J
Hersam, Mark C
description Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC–polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC–polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC–polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.
doi_str_mv 10.1021/acsnano.6b06592
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835003514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835003514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-96a545a801c7717ec49a1156cdacdd494eb981b4481ceb8a985b55ae85e9cd593</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKtnrzkKsjXpbnaTYynVCi1WquBtmc1O2y1poptE6M138A19EldaPP0zzMcw8xFyzdmAsyG_A-0tWDfIK5YLNTwhPa7SPGEyfzv9rwU_JxfebxkThSzyHgnzGCIYuti44EzcNRa9RquRPscuNo1dU7D1Yf7pTIBG08lqhTrQxtIZtGtMRi0CXXaowWQGe2zp3C2HP1_fC2f2u66dYsDWbaPVoXHWX5KzFRiPV8fsk9f7yct4msyeHh7Ho1kCacpDonIQmQDJuC4KXqDOFHAucl2DrutMZVgpyassk1xjJUFJUQkBKAUqXQuV9snNYe976z4i-lDumu47Y8Cii77kMhWMpYJnHXp7QDuN5dbF1naHlZyVf27Lo9vy6Db9BZV_cW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835003514</pqid></control><display><type>article</type><title>Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Shastry, Tejas A ; Balla, Itamar ; Bergeron, Hadallia ; Amsterdam, Samuel H ; Marks, Tobin J ; Hersam, Mark C</creator><creatorcontrib>Shastry, Tejas A ; Balla, Itamar ; Bergeron, Hadallia ; Amsterdam, Samuel H ; Marks, Tobin J ; Hersam, Mark C</creatorcontrib><description>Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC–polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC–polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC–polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b06592</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2016-11, Vol.10 (11), p.10573-10579</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shastry, Tejas A</creatorcontrib><creatorcontrib>Balla, Itamar</creatorcontrib><creatorcontrib>Bergeron, Hadallia</creatorcontrib><creatorcontrib>Amsterdam, Samuel H</creatorcontrib><creatorcontrib>Marks, Tobin J</creatorcontrib><creatorcontrib>Hersam, Mark C</creatorcontrib><title>Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC–polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC–polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC–polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhoMoWKtnrzkKsjXpbnaTYynVCi1WquBtmc1O2y1poptE6M138A19EldaPP0zzMcw8xFyzdmAsyG_A-0tWDfIK5YLNTwhPa7SPGEyfzv9rwU_JxfebxkThSzyHgnzGCIYuti44EzcNRa9RquRPscuNo1dU7D1Yf7pTIBG08lqhTrQxtIZtGtMRi0CXXaowWQGe2zp3C2HP1_fC2f2u66dYsDWbaPVoXHWX5KzFRiPV8fsk9f7yct4msyeHh7Ho1kCacpDonIQmQDJuC4KXqDOFHAucl2DrutMZVgpyassk1xjJUFJUQkBKAUqXQuV9snNYe976z4i-lDumu47Y8Cii77kMhWMpYJnHXp7QDuN5dbF1naHlZyVf27Lo9vy6Db9BZV_cW8</recordid><startdate>20161122</startdate><enddate>20161122</enddate><creator>Shastry, Tejas A</creator><creator>Balla, Itamar</creator><creator>Bergeron, Hadallia</creator><creator>Amsterdam, Samuel H</creator><creator>Marks, Tobin J</creator><creator>Hersam, Mark C</creator><general>American Chemical Society</general><scope>7X8</scope></search><sort><creationdate>20161122</creationdate><title>Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions</title><author>Shastry, Tejas A ; Balla, Itamar ; Bergeron, Hadallia ; Amsterdam, Samuel H ; Marks, Tobin J ; Hersam, Mark C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-96a545a801c7717ec49a1156cdacdd494eb981b4481ceb8a985b55ae85e9cd593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shastry, Tejas A</creatorcontrib><creatorcontrib>Balla, Itamar</creatorcontrib><creatorcontrib>Bergeron, Hadallia</creatorcontrib><creatorcontrib>Amsterdam, Samuel H</creatorcontrib><creatorcontrib>Marks, Tobin J</creatorcontrib><creatorcontrib>Hersam, Mark C</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shastry, Tejas A</au><au>Balla, Itamar</au><au>Bergeron, Hadallia</au><au>Amsterdam, Samuel H</au><au>Marks, Tobin J</au><au>Hersam, Mark C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-11-22</date><risdate>2016</risdate><volume>10</volume><issue>11</issue><spage>10573</spage><epage>10579</epage><pages>10573-10579</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Two-dimensional transition metal dichalcogenides (TMDCs) have recently attracted attention due to their superlative optical and electronic properties. In particular, their extraordinary optical absorption and semiconducting band gap have enabled demonstrations of photovoltaic response from heterostructures composed of TMDCs and other organic or inorganic materials. However, these early studies were limited to devices at the micrometer scale and/or failed to exploit the unique optical absorption properties of single-layer TMDCs. Here we present an experimental realization of a large-area type-II photovoltaic heterojunction using single-layer molybdenum disulfide (MoS2) as the primary absorber, by coupling it to the organic π-donor polymer PTB7. This TMDC–polymer heterojunction exhibits photoluminescence intensity that is tunable as a function of the thickness of the polymer layer, ultimately enabling complete quenching of the TMDC photoluminescence. The strong optical absorption in the TMDC–polymer heterojunction produces an internal quantum efficiency exceeding 40% for an overall cell thickness of less than 20 nm, resulting in exceptional current density per absorbing thickness in comparison to other organic and inorganic solar cells. Furthermore, this work provides insight into the recombination processes in type-II TMDC–polymer heterojunctions and thus provides quantitative guidance to ongoing efforts to realize efficient TMDC-based solar cells.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.6b06592</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-11, Vol.10 (11), p.10573-10579
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1835003514
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Mutual Photoluminescence Quenching and Photovoltaic Effect in Large-Area Single-Layer MoS2–Polymer Heterojunctions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutual%20Photoluminescence%20Quenching%20and%20Photovoltaic%20Effect%20in%20Large-Area%20Single-Layer%20MoS2%E2%80%93Polymer%20Heterojunctions&rft.jtitle=ACS%20nano&rft.au=Shastry,%20Tejas%20A&rft.date=2016-11-22&rft.volume=10&rft.issue=11&rft.spage=10573&rft.epage=10579&rft.pages=10573-10579&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b06592&rft_dat=%3Cproquest_acs_j%3E1835003514%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a331t-96a545a801c7717ec49a1156cdacdd494eb981b4481ceb8a985b55ae85e9cd593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835003514&rft_id=info:pmid/&rfr_iscdi=true