Loading…

Three-dimensional stochastic analysis of macrodispersion in aquifers

The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the r...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 1983-02, Vol.19 (1), p.161-180
Main Authors: Gelhar, Lynn W., Axness, Carl L.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643
cites cdi_FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643
container_end_page 180
container_issue 1
container_start_page 161
container_title Water resources research
container_volume 19
creator Gelhar, Lynn W.
Axness, Carl L.
description The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the resulting macrodispersivity tensor in terms of a three‐dimensional, statistically anisotropic input covariance describing the hydraulic conductivity. With a statistically isotropic input covariance, the longitudinal macrodispersivity is convectively controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is several orders of magnitude smaller than the longitudinal term. With an arbitrarily oriented anisotropic conductivity covariance, all components of the macrodispersivity tensor are convectively controlled, and the ratio of transverse to longitudinal dispersivity is of the order of 10−1. In this case the off‐diagonal components of the dispersivity tensor are significant, being numerically larger than the diagonal transverse terms, and the transverse dispersion process can be highly anisotropic. Dispersivities predicted by the stochastic theory are shown to be consistent with controlled field experiments and Monte Carlo simulations. The theory, which treats the asymptotic condition of large displacement, indicates that a classical gradient transport (Fickian) relationship is valid for large‐scale displacements.
doi_str_mv 10.1029/WR019i001p00161
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18352489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18352489</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtnr3vytjZpvo9StRVKlbLSY8hmExrdr262aP-9KSsevPQwDC88zwwzANwieI_gVE42a4ikhxC1sRg6AyMkCUm55PgcjCAkOEVY8ktwFcJHRAhlfAQes21nbVr4ytbBN7Uuk9A3ZqtD702iYz4EH5LGJZU2XVP40NruCCa-TvRu712M1-DC6TLYm98-Bu_PT9lskS5f5y-zh2WqCaYs5Y5bR3MmnOSkKBxkhuY4N7rIueGQWW0k4tTAQjAmuGNCC8gxspJKTRjBY3A3zG27Zre3oVeVD8aWpa5tsw8KCUynRMjTIBaMCsIiOBnAeFsInXWq7Xylu4NCUB3fqv69NRp0ML58aQ-n8Jhnazzlx03p4PnQ2-8_T3efinHMqdqs5uotW6wgX2VK4B_6BYrP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13865846</pqid></control><display><type>article</type><title>Three-dimensional stochastic analysis of macrodispersion in aquifers</title><source>Wiley Online Library Backfiles</source><creator>Gelhar, Lynn W. ; Axness, Carl L.</creator><creatorcontrib>Gelhar, Lynn W. ; Axness, Carl L.</creatorcontrib><description>The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the resulting macrodispersivity tensor in terms of a three‐dimensional, statistically anisotropic input covariance describing the hydraulic conductivity. With a statistically isotropic input covariance, the longitudinal macrodispersivity is convectively controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is several orders of magnitude smaller than the longitudinal term. With an arbitrarily oriented anisotropic conductivity covariance, all components of the macrodispersivity tensor are convectively controlled, and the ratio of transverse to longitudinal dispersivity is of the order of 10−1. In this case the off‐diagonal components of the dispersivity tensor are significant, being numerically larger than the diagonal transverse terms, and the transverse dispersion process can be highly anisotropic. Dispersivities predicted by the stochastic theory are shown to be consistent with controlled field experiments and Monte Carlo simulations. The theory, which treats the asymptotic condition of large displacement, indicates that a classical gradient transport (Fickian) relationship is valid for large‐scale displacements.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/WR019i001p00161</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Water resources research, 1983-02, Vol.19 (1), p.161-180</ispartof><rights>Copyright 1983 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643</citedby><cites>FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2FWR019i001p00161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2FWR019i001p00161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473</link.rule.ids></links><search><creatorcontrib>Gelhar, Lynn W.</creatorcontrib><creatorcontrib>Axness, Carl L.</creatorcontrib><title>Three-dimensional stochastic analysis of macrodispersion in aquifers</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the resulting macrodispersivity tensor in terms of a three‐dimensional, statistically anisotropic input covariance describing the hydraulic conductivity. With a statistically isotropic input covariance, the longitudinal macrodispersivity is convectively controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is several orders of magnitude smaller than the longitudinal term. With an arbitrarily oriented anisotropic conductivity covariance, all components of the macrodispersivity tensor are convectively controlled, and the ratio of transverse to longitudinal dispersivity is of the order of 10−1. In this case the off‐diagonal components of the dispersivity tensor are significant, being numerically larger than the diagonal transverse terms, and the transverse dispersion process can be highly anisotropic. Dispersivities predicted by the stochastic theory are shown to be consistent with controlled field experiments and Monte Carlo simulations. The theory, which treats the asymptotic condition of large displacement, indicates that a classical gradient transport (Fickian) relationship is valid for large‐scale displacements.</description><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtnr3vytjZpvo9StRVKlbLSY8hmExrdr262aP-9KSsevPQwDC88zwwzANwieI_gVE42a4ikhxC1sRg6AyMkCUm55PgcjCAkOEVY8ktwFcJHRAhlfAQes21nbVr4ytbBN7Uuk9A3ZqtD702iYz4EH5LGJZU2XVP40NruCCa-TvRu712M1-DC6TLYm98-Bu_PT9lskS5f5y-zh2WqCaYs5Y5bR3MmnOSkKBxkhuY4N7rIueGQWW0k4tTAQjAmuGNCC8gxspJKTRjBY3A3zG27Zre3oVeVD8aWpa5tsw8KCUynRMjTIBaMCsIiOBnAeFsInXWq7Xylu4NCUB3fqv69NRp0ML58aQ-n8Jhnazzlx03p4PnQ2-8_T3efinHMqdqs5uotW6wgX2VK4B_6BYrP</recordid><startdate>198302</startdate><enddate>198302</enddate><creator>Gelhar, Lynn W.</creator><creator>Axness, Carl L.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>198302</creationdate><title>Three-dimensional stochastic analysis of macrodispersion in aquifers</title><author>Gelhar, Lynn W. ; Axness, Carl L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelhar, Lynn W.</creatorcontrib><creatorcontrib>Axness, Carl L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelhar, Lynn W.</au><au>Axness, Carl L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional stochastic analysis of macrodispersion in aquifers</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1983-02</date><risdate>1983</risdate><volume>19</volume><issue>1</issue><spage>161</spage><epage>180</epage><pages>161-180</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the resulting macrodispersivity tensor in terms of a three‐dimensional, statistically anisotropic input covariance describing the hydraulic conductivity. With a statistically isotropic input covariance, the longitudinal macrodispersivity is convectively controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is several orders of magnitude smaller than the longitudinal term. With an arbitrarily oriented anisotropic conductivity covariance, all components of the macrodispersivity tensor are convectively controlled, and the ratio of transverse to longitudinal dispersivity is of the order of 10−1. In this case the off‐diagonal components of the dispersivity tensor are significant, being numerically larger than the diagonal transverse terms, and the transverse dispersion process can be highly anisotropic. Dispersivities predicted by the stochastic theory are shown to be consistent with controlled field experiments and Monte Carlo simulations. The theory, which treats the asymptotic condition of large displacement, indicates that a classical gradient transport (Fickian) relationship is valid for large‐scale displacements.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/WR019i001p00161</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 1983-02, Vol.19 (1), p.161-180
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_18352489
source Wiley Online Library Backfiles
title Three-dimensional stochastic analysis of macrodispersion in aquifers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20stochastic%20analysis%20of%20macrodispersion%20in%20aquifers&rft.jtitle=Water%20resources%20research&rft.au=Gelhar,%20Lynn%20W.&rft.date=1983-02&rft.volume=19&rft.issue=1&rft.spage=161&rft.epage=180&rft.pages=161-180&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/WR019i001p00161&rft_dat=%3Cproquest_cross%3E18352489%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13865846&rft_id=info:pmid/&rfr_iscdi=true