Loading…
Three-dimensional stochastic analysis of macrodispersion in aquifers
The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the r...
Saved in:
Published in: | Water resources research 1983-02, Vol.19 (1), p.161-180 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643 |
---|---|
cites | cdi_FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643 |
container_end_page | 180 |
container_issue | 1 |
container_start_page | 161 |
container_title | Water resources research |
container_volume | 19 |
creator | Gelhar, Lynn W. Axness, Carl L. |
description | The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the resulting macrodispersivity tensor in terms of a three‐dimensional, statistically anisotropic input covariance describing the hydraulic conductivity. With a statistically isotropic input covariance, the longitudinal macrodispersivity is convectively controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is several orders of magnitude smaller than the longitudinal term. With an arbitrarily oriented anisotropic conductivity covariance, all components of the macrodispersivity tensor are convectively controlled, and the ratio of transverse to longitudinal dispersivity is of the order of 10−1. In this case the off‐diagonal components of the dispersivity tensor are significant, being numerically larger than the diagonal transverse terms, and the transverse dispersion process can be highly anisotropic. Dispersivities predicted by the stochastic theory are shown to be consistent with controlled field experiments and Monte Carlo simulations. The theory, which treats the asymptotic condition of large displacement, indicates that a classical gradient transport (Fickian) relationship is valid for large‐scale displacements. |
doi_str_mv | 10.1029/WR019i001p00161 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18352489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18352489</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKtnr3vytjZpvo9StRVKlbLSY8hmExrdr262aP-9KSsevPQwDC88zwwzANwieI_gVE42a4ikhxC1sRg6AyMkCUm55PgcjCAkOEVY8ktwFcJHRAhlfAQes21nbVr4ytbBN7Uuk9A3ZqtD702iYz4EH5LGJZU2XVP40NruCCa-TvRu712M1-DC6TLYm98-Bu_PT9lskS5f5y-zh2WqCaYs5Y5bR3MmnOSkKBxkhuY4N7rIueGQWW0k4tTAQjAmuGNCC8gxspJKTRjBY3A3zG27Zre3oVeVD8aWpa5tsw8KCUynRMjTIBaMCsIiOBnAeFsInXWq7Xylu4NCUB3fqv69NRp0ML58aQ-n8Jhnazzlx03p4PnQ2-8_T3efinHMqdqs5uotW6wgX2VK4B_6BYrP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13865846</pqid></control><display><type>article</type><title>Three-dimensional stochastic analysis of macrodispersion in aquifers</title><source>Wiley Online Library Backfiles</source><creator>Gelhar, Lynn W. ; Axness, Carl L.</creator><creatorcontrib>Gelhar, Lynn W. ; Axness, Carl L.</creatorcontrib><description>The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the resulting macrodispersivity tensor in terms of a three‐dimensional, statistically anisotropic input covariance describing the hydraulic conductivity. With a statistically isotropic input covariance, the longitudinal macrodispersivity is convectively controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is several orders of magnitude smaller than the longitudinal term. With an arbitrarily oriented anisotropic conductivity covariance, all components of the macrodispersivity tensor are convectively controlled, and the ratio of transverse to longitudinal dispersivity is of the order of 10−1. In this case the off‐diagonal components of the dispersivity tensor are significant, being numerically larger than the diagonal transverse terms, and the transverse dispersion process can be highly anisotropic. Dispersivities predicted by the stochastic theory are shown to be consistent with controlled field experiments and Monte Carlo simulations. The theory, which treats the asymptotic condition of large displacement, indicates that a classical gradient transport (Fickian) relationship is valid for large‐scale displacements.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/WR019i001p00161</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Water resources research, 1983-02, Vol.19 (1), p.161-180</ispartof><rights>Copyright 1983 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643</citedby><cites>FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2FWR019i001p00161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2FWR019i001p00161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27924,27925,46049,46473</link.rule.ids></links><search><creatorcontrib>Gelhar, Lynn W.</creatorcontrib><creatorcontrib>Axness, Carl L.</creatorcontrib><title>Three-dimensional stochastic analysis of macrodispersion in aquifers</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the resulting macrodispersivity tensor in terms of a three‐dimensional, statistically anisotropic input covariance describing the hydraulic conductivity. With a statistically isotropic input covariance, the longitudinal macrodispersivity is convectively controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is several orders of magnitude smaller than the longitudinal term. With an arbitrarily oriented anisotropic conductivity covariance, all components of the macrodispersivity tensor are convectively controlled, and the ratio of transverse to longitudinal dispersivity is of the order of 10−1. In this case the off‐diagonal components of the dispersivity tensor are significant, being numerically larger than the diagonal transverse terms, and the transverse dispersion process can be highly anisotropic. Dispersivities predicted by the stochastic theory are shown to be consistent with controlled field experiments and Monte Carlo simulations. The theory, which treats the asymptotic condition of large displacement, indicates that a classical gradient transport (Fickian) relationship is valid for large‐scale displacements.</description><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKtnr3vytjZpvo9StRVKlbLSY8hmExrdr262aP-9KSsevPQwDC88zwwzANwieI_gVE42a4ikhxC1sRg6AyMkCUm55PgcjCAkOEVY8ktwFcJHRAhlfAQes21nbVr4ytbBN7Uuk9A3ZqtD702iYz4EH5LGJZU2XVP40NruCCa-TvRu712M1-DC6TLYm98-Bu_PT9lskS5f5y-zh2WqCaYs5Y5bR3MmnOSkKBxkhuY4N7rIueGQWW0k4tTAQjAmuGNCC8gxspJKTRjBY3A3zG27Zre3oVeVD8aWpa5tsw8KCUynRMjTIBaMCsIiOBnAeFsInXWq7Xylu4NCUB3fqv69NRp0ML58aQ-n8Jhnazzlx03p4PnQ2-8_T3efinHMqdqs5uotW6wgX2VK4B_6BYrP</recordid><startdate>198302</startdate><enddate>198302</enddate><creator>Gelhar, Lynn W.</creator><creator>Axness, Carl L.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>198302</creationdate><title>Three-dimensional stochastic analysis of macrodispersion in aquifers</title><author>Gelhar, Lynn W. ; Axness, Carl L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelhar, Lynn W.</creatorcontrib><creatorcontrib>Axness, Carl L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelhar, Lynn W.</au><au>Axness, Carl L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional stochastic analysis of macrodispersion in aquifers</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>1983-02</date><risdate>1983</risdate><volume>19</volume><issue>1</issue><spage>161</spage><epage>180</epage><pages>161-180</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>The dispersive mixing resulting from complex flow in three‐dimensionally heterogeneous porous media is analyzed using stochastic continuum theory. Stochastic solutions of the perturbed steady flow and solute transport equations are used to construct the macroscopic dispersive flux and evaluate the resulting macrodispersivity tensor in terms of a three‐dimensional, statistically anisotropic input covariance describing the hydraulic conductivity. With a statistically isotropic input covariance, the longitudinal macrodispersivity is convectively controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is several orders of magnitude smaller than the longitudinal term. With an arbitrarily oriented anisotropic conductivity covariance, all components of the macrodispersivity tensor are convectively controlled, and the ratio of transverse to longitudinal dispersivity is of the order of 10−1. In this case the off‐diagonal components of the dispersivity tensor are significant, being numerically larger than the diagonal transverse terms, and the transverse dispersion process can be highly anisotropic. Dispersivities predicted by the stochastic theory are shown to be consistent with controlled field experiments and Monte Carlo simulations. The theory, which treats the asymptotic condition of large displacement, indicates that a classical gradient transport (Fickian) relationship is valid for large‐scale displacements.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/WR019i001p00161</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 1983-02, Vol.19 (1), p.161-180 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_miscellaneous_18352489 |
source | Wiley Online Library Backfiles |
title | Three-dimensional stochastic analysis of macrodispersion in aquifers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20stochastic%20analysis%20of%20macrodispersion%20in%20aquifers&rft.jtitle=Water%20resources%20research&rft.au=Gelhar,%20Lynn%20W.&rft.date=1983-02&rft.volume=19&rft.issue=1&rft.spage=161&rft.epage=180&rft.pages=161-180&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/WR019i001p00161&rft_dat=%3Cproquest_cross%3E18352489%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4356-7f7ef5b68f974ddf06c5b3bcadb7c706eac9175c0d86687f68a80731e959a4643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13865846&rft_id=info:pmid/&rfr_iscdi=true |