Loading…

In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart

The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imagi...

Full description

Saved in:
Bibliographic Details
Published in:Progress in biophysics and molecular biology 2017-03, Vol.124, p.31-40
Main Authors: Shimozawa, Togo, Hirokawa, Erisa, Kobirumaki-Shimozawa, Fuyu, Oyama, Kotaro, Shintani, Seine A., Terui, Takako, Kushida, Yasuharu, Tsukamoto, Seiichi, Fujii, Teruyuki, Ishiwata, Shin'ichi, Fukuda, Norio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-a9c3607a23084983fd88bb0eedb9f7e9d4eb49aac115483725b984913d8f66d33
cites cdi_FETCH-LOGICAL-c374t-a9c3607a23084983fd88bb0eedb9f7e9d4eb49aac115483725b984913d8f66d33
container_end_page 40
container_issue
container_start_page 31
container_title Progress in biophysics and molecular biology
container_volume 124
creator Shimozawa, Togo
Hirokawa, Erisa
Kobirumaki-Shimozawa, Fuyu
Oyama, Kotaro
Shintani, Seine A.
Terui, Takako
Kushida, Yasuharu
Tsukamoto, Seiichi
Fujii, Teruyuki
Ishiwata, Shin'ichi
Fukuda, Norio
description The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 μm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the μm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research.
doi_str_mv 10.1016/j.pbiomolbio.2016.09.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835363703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610716300773</els_id><sourcerecordid>1835363703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-a9c3607a23084983fd88bb0eedb9f7e9d4eb49aac115483725b984913d8f66d33</originalsourceid><addsrcrecordid>eNqFkEtu2zAQhomiReM8rlBw2Y3UoSiTVHdp0EeAANmka4IiRxYNiXRJ2YVvk7P0ZKXhtF12MwMMvpnB_xFCGdQMmPiwrXe9j3OcSq2bMqmhqwHEK7JiSvKKSd68JisA2VWCgbwglzlvAaBhUrwlF40UopUSViTch1_PB3-I1JrkvLE0mBArP5uND5uP9JYG_EkXtGOIU9wc6RATHf1mrHYJrc8-BmqCmY4ZM40DzSbZOGNC6o7BzN5m6gNdRqQjmrRckzeDmTLevPQr8v3L56e7b9XD49f7u9uHynLZLpXpLBcgTcNBtZ3ig1Oq7wHR9d0gsXMt9m1njGVs3Soum3XfFZBxpwYhHOdX5P357i7FH3vMi559tjhNJmDcZ80UX3PBJZxQdUZtijknHPQulfjpqBnok2291f9s65NtDZ0utsvqu5cv-35G93fxj94CfDoDWLIePCadrcdg0flib9Eu-v9_-Q0ylZfe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835363703</pqid></control><display><type>article</type><title>In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart</title><source>ScienceDirect Freedom Collection</source><creator>Shimozawa, Togo ; Hirokawa, Erisa ; Kobirumaki-Shimozawa, Fuyu ; Oyama, Kotaro ; Shintani, Seine A. ; Terui, Takako ; Kushida, Yasuharu ; Tsukamoto, Seiichi ; Fujii, Teruyuki ; Ishiwata, Shin'ichi ; Fukuda, Norio</creator><creatorcontrib>Shimozawa, Togo ; Hirokawa, Erisa ; Kobirumaki-Shimozawa, Fuyu ; Oyama, Kotaro ; Shintani, Seine A. ; Terui, Takako ; Kushida, Yasuharu ; Tsukamoto, Seiichi ; Fujii, Teruyuki ; Ishiwata, Shin'ichi ; Fukuda, Norio</creatorcontrib><description>The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 μm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the μm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2016.09.006</identifier><identifier>PMID: 27664770</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Calcium - metabolism ; Contractility ; Humans ; Intracellular Space - metabolism ; Molecular Imaging - methods ; Muscle ; Nanotechnology - methods ; Sarcomeres - metabolism ; Ventricular function</subject><ispartof>Progress in biophysics and molecular biology, 2017-03, Vol.124, p.31-40</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-a9c3607a23084983fd88bb0eedb9f7e9d4eb49aac115483725b984913d8f66d33</citedby><cites>FETCH-LOGICAL-c374t-a9c3607a23084983fd88bb0eedb9f7e9d4eb49aac115483725b984913d8f66d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27664770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimozawa, Togo</creatorcontrib><creatorcontrib>Hirokawa, Erisa</creatorcontrib><creatorcontrib>Kobirumaki-Shimozawa, Fuyu</creatorcontrib><creatorcontrib>Oyama, Kotaro</creatorcontrib><creatorcontrib>Shintani, Seine A.</creatorcontrib><creatorcontrib>Terui, Takako</creatorcontrib><creatorcontrib>Kushida, Yasuharu</creatorcontrib><creatorcontrib>Tsukamoto, Seiichi</creatorcontrib><creatorcontrib>Fujii, Teruyuki</creatorcontrib><creatorcontrib>Ishiwata, Shin'ichi</creatorcontrib><creatorcontrib>Fukuda, Norio</creatorcontrib><title>In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 μm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the μm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Contractility</subject><subject>Humans</subject><subject>Intracellular Space - metabolism</subject><subject>Molecular Imaging - methods</subject><subject>Muscle</subject><subject>Nanotechnology - methods</subject><subject>Sarcomeres - metabolism</subject><subject>Ventricular function</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtu2zAQhomiReM8rlBw2Y3UoSiTVHdp0EeAANmka4IiRxYNiXRJ2YVvk7P0ZKXhtF12MwMMvpnB_xFCGdQMmPiwrXe9j3OcSq2bMqmhqwHEK7JiSvKKSd68JisA2VWCgbwglzlvAaBhUrwlF40UopUSViTch1_PB3-I1JrkvLE0mBArP5uND5uP9JYG_EkXtGOIU9wc6RATHf1mrHYJrc8-BmqCmY4ZM40DzSbZOGNC6o7BzN5m6gNdRqQjmrRckzeDmTLevPQr8v3L56e7b9XD49f7u9uHynLZLpXpLBcgTcNBtZ3ig1Oq7wHR9d0gsXMt9m1njGVs3Soum3XfFZBxpwYhHOdX5P357i7FH3vMi559tjhNJmDcZ80UX3PBJZxQdUZtijknHPQulfjpqBnok2291f9s65NtDZ0utsvqu5cv-35G93fxj94CfDoDWLIePCadrcdg0flib9Eu-v9_-Q0ylZfe</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Shimozawa, Togo</creator><creator>Hirokawa, Erisa</creator><creator>Kobirumaki-Shimozawa, Fuyu</creator><creator>Oyama, Kotaro</creator><creator>Shintani, Seine A.</creator><creator>Terui, Takako</creator><creator>Kushida, Yasuharu</creator><creator>Tsukamoto, Seiichi</creator><creator>Fujii, Teruyuki</creator><creator>Ishiwata, Shin'ichi</creator><creator>Fukuda, Norio</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201703</creationdate><title>In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart</title><author>Shimozawa, Togo ; Hirokawa, Erisa ; Kobirumaki-Shimozawa, Fuyu ; Oyama, Kotaro ; Shintani, Seine A. ; Terui, Takako ; Kushida, Yasuharu ; Tsukamoto, Seiichi ; Fujii, Teruyuki ; Ishiwata, Shin'ichi ; Fukuda, Norio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-a9c3607a23084983fd88bb0eedb9f7e9d4eb49aac115483725b984913d8f66d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Contractility</topic><topic>Humans</topic><topic>Intracellular Space - metabolism</topic><topic>Molecular Imaging - methods</topic><topic>Muscle</topic><topic>Nanotechnology - methods</topic><topic>Sarcomeres - metabolism</topic><topic>Ventricular function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimozawa, Togo</creatorcontrib><creatorcontrib>Hirokawa, Erisa</creatorcontrib><creatorcontrib>Kobirumaki-Shimozawa, Fuyu</creatorcontrib><creatorcontrib>Oyama, Kotaro</creatorcontrib><creatorcontrib>Shintani, Seine A.</creatorcontrib><creatorcontrib>Terui, Takako</creatorcontrib><creatorcontrib>Kushida, Yasuharu</creatorcontrib><creatorcontrib>Tsukamoto, Seiichi</creatorcontrib><creatorcontrib>Fujii, Teruyuki</creatorcontrib><creatorcontrib>Ishiwata, Shin'ichi</creatorcontrib><creatorcontrib>Fukuda, Norio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimozawa, Togo</au><au>Hirokawa, Erisa</au><au>Kobirumaki-Shimozawa, Fuyu</au><au>Oyama, Kotaro</au><au>Shintani, Seine A.</au><au>Terui, Takako</au><au>Kushida, Yasuharu</au><au>Tsukamoto, Seiichi</au><au>Fujii, Teruyuki</au><au>Ishiwata, Shin'ichi</au><au>Fukuda, Norio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2017-03</date><risdate>2017</risdate><volume>124</volume><spage>31</spage><epage>40</epage><pages>31-40</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 μm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the μm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27664770</pmid><doi>10.1016/j.pbiomolbio.2016.09.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2017-03, Vol.124, p.31-40
issn 0079-6107
1873-1732
language eng
recordid cdi_proquest_miscellaneous_1835363703
source ScienceDirect Freedom Collection
subjects Animals
Calcium - metabolism
Contractility
Humans
Intracellular Space - metabolism
Molecular Imaging - methods
Muscle
Nanotechnology - methods
Sarcomeres - metabolism
Ventricular function
title In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%C2%A0vivo%20cardiac%20nano-imaging:%20A%20new%20technology%20for%20high-precision%20analyses%20of%20sarcomere%20dynamics%20in%20the%20heart&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Shimozawa,%20Togo&rft.date=2017-03&rft.volume=124&rft.spage=31&rft.epage=40&rft.pages=31-40&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2016.09.006&rft_dat=%3Cproquest_cross%3E1835363703%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-a9c3607a23084983fd88bb0eedb9f7e9d4eb49aac115483725b984913d8f66d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835363703&rft_id=info:pmid/27664770&rfr_iscdi=true